

Trusted Computing
Platform Alliance

(TCPA)

Main Specification
Version 1.1a

Copyright © 2000-2001 Compaq Computer Corporation, Hewlett-Packard Company, IBM Corporation,

Intel Corporation, Microsoft Corporation

All rights reserved.

DISCLAIMERS:

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION,
OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO THE USE OF THE INFORMATION IN
THIS SPECIFICATION AND TO THE IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.
COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

WITHOUT LIMITATION, COMPAQ, HP, IBM, INTEL, AND MICROSOFT DISCLAIM ALL LIABILITY FOR
COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF
USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY
WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR ANY INFORMATION HEREIN.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

TCPA Main Specification Page i i

Version 1.1a 1 December 2001

Acknowledgement

TCPA wishes to thank members of the PKI, PC Specific and Conformance Workgroup who contributed
expertise and text to this document. Thanks must be given to the members of the TCPA Technical
Committee who were Michael Angelo, Boris Balacheff, Josh Benaloh, David Challener, Dhruv Desai,
Paul England, David Grawrock, Bob Meinschein, Manny Novoa, Graeme Proudler, Jim Ward and Monty
Wiseman.

David Chan

Technical Committee Chair

TCPA Main Specification Page i i i

Version 1.1a 1 December 2001

Change History

Version Date Description
0.44 July 2000 Voted by members as appropriate for public release

with modifications.

0.90 August 2000 First version released to public.

0.91 October 26, 2000 Remove chapters 1 & 2. Complete reformat

0.92 4 November, 2000 Added new chapter for structures, updated
functions to match IDL, editing changes.

1.0 RC1 28 November 2000 Incorporated comments cleaned up structures and
made ready for publication.

1.0 RC2 11 December 2000 Incorporated changes from reflector.
Added new change authorization command.

1.0 RC4 10 Jan 2001 Incorporated changes and fixed up IDL

1.0 RC5 11 Jan 2001 PKCS#1 changes

1.01 17 April 2001 Implemented corrections. Mid point save made to
avoid problems with track changes in document

1.02 18 April 2001 Continue with changes for 1.1 release, changed IDL
to table format

1.03 First attempt to reconcile IDL misses

1.04 7 May 2001 Mid level drop to show all changes in regard to IDL

1.06 17 May 2001 All CR’s complete

1.07 22 May 2001 Cleanup from WG messages and changing in Audit
commands.

1.1 RC1 25 May 2001 Release candidate for specification

1.1 RC2 4 June 2001 All changes

1.1 RC3 12 June 2001 Removal of TSS commands, cleanup of parameter
blocks, all comments from v1 reflector.

1.1 RC4 5 July 2001 Editing changes, candidate for final review

1.1 RC6 17 July 2001 All changes made and version ready for voting

1.1 31 July 2001 Voted on release of 1.1

1.1a 12th November 2001 Includes all errata upto and including #55

TCPA Main Specification Page v

Version 1.1a 1 December 2001

Table Of Contents
1. Forward...1
2. The Trusted Platform Subsystem...2

2.1 Introduction ...2
2.2 Roots of Trust..2

2.2.1 Definitions ..3
2.2.2 Instantiations and Trust Bindings ..3

2.3 Integrity Operations...5
2.3.1 Storage of Integrity Metrics..5
2.3.2 Reporting of Integrity Metrics...6

2.4 Use of Keys Associated with TPM Identities ..7
2.5 Cryptographic Operations ...7
2.6 Opting to use a TPM ...8

2.6.1 Enabling Ownership...9
2.6.2 Activating a TPM..9
2.6.3 Selected operations ...11

2.7 Protected, Unprotected, and Connection Operations ...13
3. Protection..14

3.1 Introduction ...14
3.2 Threat..14
3.3 Integrity ...15
3.4 Privileged Access..15
3.5 Side effects ...15

4. Structures and Defines ...16
4.1.1 Endness of Structures ...16
4.1.2 Byte Packing..16
4.1.3 Lengths ..16

4.2 Defines ..17
4.2.1 Basic data types ..17
4.2.2 Boolean types ..17
4.2.3 Helper redefinitions..17
4.2.4 Enumerated Helper redefinitions ...18
4.2.5 Vendor specific ..19

4.3 Return codes...20
4.4 Command Specification Table Description...23

4.4.1 Introduction, Definition of Terms..23
4.4.2 HMAC Calculation for Authorization ..23
4.4.3 Parameter List Tag Identifiers..24

4.5 TCPA_VERSION ..25
4.6 TCPA_DIGEST ...26
4.7 TCPA_NONCE..27
4.8 TCPA_AUTHDATA ...28
4.9 TCPA_KEY_HANDLE_LIST ...29
4.10 TCPA_KEY_USAGE values..30

4.10.1 Mandatory Key Usage Schemes ...31
4.11 TCPA_AUTH_DATA_USAGE values ...32
4.12 TCPA_KEY_FLAGS..33
4.13 Flags and persistent data structures ...34

4.13.1 TCPA persistent data...35
4.13.2 TCPA_PERSISTENT_FLAGS Structure ...37
4.13.3 TCPA_VOLATILE_FLAGS Structure ..40

4.14 TCPA_PAYLOAD_TYPE ..43
4.15 TCPA_ENTITY_TYPE...44
4.16 TCPA_STARTUP_TYPE...45
4.17 TCPA_PROTOCOL_ID ...46

TCPA Main Specification Page v i

Version 1.1a 1 December 2001

4.18 TCPA_ALGORITHM_ID..47
4.19 TCPA_PHYSICAL_PRESENCE ...48
4.20 TCPA_KEY_PARMS...49

4.20.1 TCPA_RSA_KEY_PARMS..49
4.21 TCPA_CHANGEAUTH_VALIDATE ..51
4.22 TCPA_MIGRATE_SCHEME...52
4.23 TCPA_MIGRATIONKEYAUTH ...53
4.24 TCPA_AUDIT_EVENT structure...54
4.25 PCR Structures ...55

4.25.1 TCPA_EVENT_CERT ...56
4.25.2 TCPA_PCR_EVENT..57
4.25.3 TCPA_PCR_SELECTION ...59
4.25.4 TCPA_PCR_COMPOSITE..60
4.25.5 TCPA_PCR_INFO ...61

4.26 Storage Structures ..62
4.26.1 TCPA_STORED_DATA...62
4.26.2 TCPA_SEALED_DATA ...63
4.26.3 TCPA_SYMMETRIC_KEY ..64
4.26.4 TCPA_BOUND_DATA...65

4.27 TCPA_KEY complex ...66
4.27.1 TCPA_KEY ..67
4.27.2 TCPA_STORE_PUBKEY ..68
4.27.3 TCPA_PUBKEY...69
4.27.4 TCPA_STORE_ASYMKEY ...70
4.27.5 TCPA_STORE_PRIVKEY ...72
4.27.6 TCPA_MIGRATE_ASYMKEY ...73

4.28 TCPA_CERTIFY_INFO Structure ...74
4.29 TCPA_QUOTE_INFO Structure..75
4.30 Identity Structures ...76

4.30.1 TCPA_IDENTITY_CONTENTS...76
4.30.2 TCPA_IDENTITY_REQ ...77
4.30.3 TCPA_IDENTITY_PROOF..78
4.30.4 TCPA_ASYM_CA_CONTENTS ..79
4.30.5 TCPA_SYM_CA_ATTESTATION ...80

4.31 TCPA_CAPABILITY_AREA ..81
4.32 Credentials ..82

4.32.1 Evidence of Subsystem Endorsement...83
4.32.2 Evidence of Platform Endorsement ...85
4.32.3 Evidence of Platform Conformance...87
4.32.4 TCPA Validation Data..89
4.32.5 Evidence of Trusted Platform Module Identity...90

4.33 Command Ordinals ...92
5. Authorization and Ownership ...96

5.1 Introduction ...96
5.1.1 Tag Usage ...98

5.2 Authorization protocols ...99
5.2.1 OI-AP description...101
5.2.2 TPM_OIAP...105
5.2.3 Authorization using an OI-AP session ...106
5.2.4 OS-AP Description...107
5.2.5 TPM_OSAP ...110
5.2.6 Authorization using an OS-AP session..112

5.3 TPM_Terminate_Handle...113
5.4 ADIP – Creating a New Entity...114
5.5 ADCP - Changing Authorization Data...117
5.6 Changing authorization values..118

TCPA Main Specification Page v i i

Version 1.1a 1 December 2001

5.6.1 TPM_ChangeAuth ...118
5.6.2 TPM_ChangeAuthOwner...121

5.7 Asymmetric Authorization Change Protocol ...123
5.7.1 TPM_ChangeAuthAsymStart...124
5.7.2 TPM_ChangeAuthAsymFinish ..127

5.8 Authorization Data ..129
5.9 Nonces ..130
5.10 Authorization Handle ...131
5.11 TPM Ownership...132

5.11.1 TPM_TakeOwnership ..133
6. Integrity Collection and Reporting ..135

6.1 Introduction ...135
6.2 Platform Configuration Registers ..136

6.2.1 Format and Properties ...136
6.2.2 Initialization ..136
6.2.3 Authorized PCRs ...136

6.3 Operations Supporting Integrity Collection and Reporting ...137
6.3.1 TPM_Extend ..137
6.3.2 TPM_PcrRead ...138
6.3.3 TPM_Quote..139
6.3.4 TPM_DirWriteAuth...141
6.3.5 TPM_DirRead ..143

7. Protected Storage...144
7.1 Introduction ...146

7.1.1 Characteristics ...146
7.1.2 Key Storage ...148

7.2 Mandatory Functions ..149
7.2.1 TPM_Seal ..150
7.2.2 TPM_Unseal ..153
7.2.3 TSS_Bind...156
7.2.4 TPM_UnBind ...157
7.2.5 TPM_CreateWrapKey..160
7.2.6 TSS_WrapKey ...163
7.2.7 TSS_WrapKeyToPcr ...164
7.2.8 TPM_LoadKey ...165
7.2.9 TPM_EvictKey ...168
7.2.10 TPM_GetPubKey...169
7.2.11 TPM_CreateMigrationBlob ..170
7.2.12 TPM_ConvertMigrationBlob...173
7.2.13 TPM_AuthorizeMigrationKey...175

7.3 TPM Optional Functions: Maintenance...177
7.3.1 TPM_CreateMaintenanceArchive..179
7.3.2 TPM_LoadMaintenanceArchive ..181
7.3.3 TPM_KillMaintenanceFeature ...183
7.3.4 TPM_LoadManuMaintPub ...185
7.3.5 TPM_ReadManuMaintPub ..187

8. Cryptographic and Miscellaneous Functions..188
8.1 Introduction ...188
8.2 TPM Hash Operations ..189

8.2.1 TPM_SHA1Start ..190
8.2.2 TPM_SHA1Update ..191
8.2.3 TPM_SHA1Complete ..192
8.2.4 TPM_SHA1CompleteExtend ...193

8.3 Key Certification ..194
8.3.1 TPM_CertifyKey...194

8.4 TPM Internal Asymmetric Encryption..197

TCPA Main Specification Page v i i i

Version 1.1a 1 December 2001

8.4.1 TCPA_ES_RSAESOAEP_SHA1_MGF1...198
8.4.2 TCPA_ES_RSAESPKCSV15..198

8.5 TPM Internal Digital Signatures ..198
8.5.1 TCPA_SS_RSASSAPKCS1v15_SHA1...198
8.5.2 TCPA_SS_RSASSAPKCS1v15_DER ..199

8.6 HMAC Calculation...199
8.7 Digital Signatures ..200

8.7.1 TPM_Sign ..200
8.7.2 TSS_VerifySignature ...202

8.8 Random Numbers...203
8.8.1 TPM_GetRandom..204
8.8.2 TPM_StirRandom ..205

8.9 Self Test ..206
8.9.1 TPM_SelfTestFull ..207
8.9.2 TPM_CertifySelfTest..208
8.9.3 TPM_ContinueSelfTest..210
8.9.4 TPM_GetTestResult ..211

8.10 Reset and Clear Operations..212
8.10.1 TPM_Reset ..213
8.10.2 TPM_Init...214
8.10.3 TPM_SaveState...215
8.10.4 TPM_Startup..217
8.10.5 TPM_OwnerClear ..219
8.10.6 TPM_DisableOwnerClear ..221
8.10.7 TPM_ForceClear ...222
8.10.8 TPM_DisableForceClear ...223

8.11 The GetCapability Commands ..224
8.11.1 TPM_GetCapability..225
8.11.2 TPM_GetCapabilitySigned ..227
8.11.3 TPM_GetCapabilityOwner ...229

8.12 Audit Commands...231
8.12.1 TPM_GetAuditEvent ..232
8.12.2 TPM_GetAuditEventSigned...233
8.12.3 TPM_SetOrdinalAuditStatus..235
8.12.4 TPM_GetOrdinalAuditStatus ...237
8.12.5 Effect of audit failing after successful completion of a command..238

8.13 Enabling Ownership ..241
8.13.1 TPM_SetOwnerInstall..242

8.14 Enabling a TPM...243
8.14.1 TPM_OwnerSetDisable ...244
8.14.2 TPM_PhysicalDisable..245
8.14.3 TPM_PhysicalEnable...246

8.15 Activating a TPM ...247
8.15.1 TPM_PhysicalSetDeactivated ...248
8.15.2 TPM_SetTempDeactivated..249

8.16 TPM_FieldUpgrade ...250
8.17 TPM_SetRedirection ...252
8.18 Key and Session Management ...254

8.18.1 TPM_SaveKeyContext ..255
8.18.2 TPM_LoadKeyContext...256

8.19 Authorization Context Management..257
8.19.1 TPM_SaveAuthContext ...258
8.19.2 TPM_LoadAuthContext ...259

9. Subsystem Credentials...260
9.1 Introduction ...260
9.2 Endorsement...260

TCPA Main Specification Page ix

Version 1.1a 1 December 2001

9.2.1 TPM_CreateEndorsementKeyPair ..261
9.2.2 TPM_ReadPubek ..263
9.2.3 TPM_DisablePubekRead ..264
9.2.4 TPM_OwnerReadPubek..265

9.3 Generating a Trusted Platform Module Identity ..266
9.3.1 TPM_MakeIdentity...269
9.3.2 TSS_CollateIdentityRequest..272
9.3.3 Contacting a Privacy CA..274
9.3.4 TPM_ActivateIdentity...275
9.3.5 TSS_RecoverTPMIdentity ...277

9.4 Instantiation of Data When Contacting a Privacy CA ...278
9.4.1 From Owner to Privacy CA..278
9.4.2 From Privacy CA to Owner ..280

9.5 Instantiation of Credentials as Certificates ...281
9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALs..282
9.5.2 Instantiation of PLATFORM_CREDENTIAL..285
9.5.3 Instantiation of TPM_CONFORMANCE_CREDENTIAL ...288
9.5.4 Instantiation of VALIDATION_DATA ...291
9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL ...294
9.5.6 ASN.1 Definitions...298

10. Conformance Criteria ...300
10.1 Base Levels for Interoperability ...300
10.2 Conformance Specification Sheet ...301
10.3 Protocol Negotiation and Algorithm Agility ..302
10.4 Cryptographic Algorithms and Protocols...303

10.4.1 Asymmetric ..303
10.4.2 Symmetric ..303
10.4.3 Hashing..304
10.4.4 Signature Operations...304
10.4.5 Creating a PCR composite hash ...305
10.4.6 Creating TCPA_CHOSENID_HASH ...305
10.4.7 Using Secret Keys ...305

10.5 Random Number Generator (RNG) ..306
10.5.1 Entropy Source and Collector..306
10.5.2 State Register ..306
10.5.3 Mixing Function..307
10.5.4 RNG Reset...307

10.6 Key Generation ...308
10.6.1 Asymmetric ..308
10.6.2 Symmetric ..308
10.6.3 Nonce Creation..308

10.7 Auditing..309
10.8 Self-Tests ..310

10.8.1 Required Self-Tests ...310
10.8.2 Recommended Checks ...310
10.8.3 Self-Test Failure ..310

10.9 Object Reuse...311
10.10 Maintenance..311
10.11 Backup...311
10.12 Strength of Function ..311
10.13 Physical Protection..312
10.14 Protection Profile ...312
10.15 Compliance to Specification ..313
10.16 Field Upgrade..313
10.17 Physical Presence or Access..313

10.17.1 TSC_PhysicalPresence ...314

TCPA Main Specification Page x

Version 1.1a 1 December 2001

10.18 Other Specifications ..316
Appendix A: Glossary ..317
Appendix B: Key Usage Table ..321

TCPA Main Specification Page 1

Version 1.1a 1 December 2001

1. Forward
This document is an industry specification that enables trust in computing platforms in general.

This specification defines a trusted Subsystem that is an integral part of each platform, and provides
functions that can be used by enhanced operating systems and applications. The Subsystem employs
cryptographic methods when establishing trust, and while this does not in itself convert a platform into a
secure computing environment, it is a significant step in that direction.

Standardization is necessary so that the security and cryptographic community can assess the
mechanisms involved, and so that customers can understand and trust the effectiveness of new features.
Manufacturers will compete in the marketplace by installing Subsystems with varying capabilities and cost
points. The Subsystem itself will have basic functions that maintain privacy, yet support the identity and
authentication of entities such as the platform, the user, and other entities. The Subsystem will have other
capabilities to protect data and verify certain operational aspects of the platform. It can be a separate
device or devices, or it can be integrated into some existing component or components provided the
implementation meets the requirements of this specification. This is necessary to achieve the
fundamental goal of ubiquity.

Please note a very important distinction between different sections of text throughout this document.
Beginning in chapter 2, “The Trusted Platform Subsystem,” you will encounter two distinctive kinds of text:
informative comment and normative statements. Because most of the text in this specification will be of
the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning
and end of each informative comment and highlighting its text in gray. This means that unless text is
specifically marked as of the kind informative comment, you can consider it of the kind normative
statements.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10 normative statements are to be
interpreted as described in [RFC-2119].

For example:

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCPA specification the user must read the specification. (This use of MUST does not
require any action).

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind
normative statements ...

To understand the TCPA specification the user MUST read the specification. (This use of MUST indicates
a keyword usage and requires an action).

TCPA Main Specification Page 2

Version 1.1a 1 December 2001

2. The Trusted Platform Subsystem

2.1 Introduction
Start of informative comment:

The TCPA Subsystem design is to provide useful trust and security capabilities while minimizing the
number of functions that must be trusted. This arrangement is necessary to make the Subsystem useful
while remaining low in cost and can result in unusual features as compared with a conventional crypto co-
processor.

End of informative comment.

2.2 Roots of Trust
Start of informative comment:

This section introduces the architectural aspects of a Trusted Platform that enable the collection and
reporting of integrity metrics.

Among other things, a Trusted Platform enables an entity to determine the state of the software
environment in that platform and to SEAL data to a particular software environment in that platform.

The entity deduces whether the state of the computing environment in that platform is acceptable and
performs some transaction with that platform. If that transaction involves sensitive data that must be
stored on the platform, the entity can ensure that that data is held in a confidential format unless the state
of the computing environment in that platform is acceptable to the entity.

To enable this, a Trusted Platform provides information to enable the entity to deduce the software
environment in a Trusted Platform. That information is reliably measured and reported to the entity. At the
same time, a Trusted Platform provides a means to encrypt cryptographic keys and to state the software
environment that must be in place before the keys can be decrypted.

Both these functions require integrity metrics. These metrics consist of data reflecting the integrity of the
software state of the Trusted Platform. Both functions require two roots of trust in a platform. One is
known as the “root of trust for measuring integrity metrics,” and the other is known as the “root of trust for
storing and reporting integrity metrics.”

The root of trust for measuring integrity metrics is likely to be different for different types of platforms
because the metrics and their measurements will depend on the type of platform. The root of trust for
storing and reporting integrity metrics enables integrity metrics to be reliably stored and reported and can
have the same capabilities, irrespective of the type of platform.

A “trusted measurement root” measures certain platform characteristics, logs the measurement data in a
measurement store, and stores the final result in a TPM (which contains the root of trust for storing and
reporting integrity metrics). The trusted measurement root might also measure the characteristics of
another measurement agent before passing control to the second agent. That second agent might repeat
the process of measuring platform characteristics, storing measurement data and the final result, passing
control to a third measurement agent, and so on.

When an integrity challenge is received, the Trusted Platform Agent gathers the following:

• the final results from the TPM,

• the log of the measurement data from the Trusted Platform Measurement Store, and

• TCPA Validation Data that states the values that the measurements should produce in a platform that
is working correctly.

The Trusted Platform Agent then sends this measurement data to the Challenger. The Challenger uses
the data to check that it is consistent with the final results and then compares the data (and perhaps the
final results) with the TCPA Validation Data. This comparison enables the Challenger to deduce the

TCPA Main Specification Page 3

Version 1.1a 1 December 2001

software state of the Trusted Platform and consequently decide whether the Challenger is satisfied to
trust the platform for the intended purpose.

Once the Challenger has determined that the Trusted Platform can be trusted, the Challenger can use the
TPM to store keys alongside stated values of integrity metrics, such that the TPM will not release the keys
unless the current measured values of integrity metric match the stated values of integrity metric.

Both roots of trust, plus certain other capabilities for other purposes, must be implemented in ways that
enable confidence in their correct operation in all circumstances of interest. A Challenger must be able to
trust the roots and these capabilities. The implementation of the root of trust for measurement will typically
vary depending on the type of platform (for example, PC, server, or phone). The TPM is defined as the
set of all trusted capabilities apart from the root of trust for measurement, because these are independent
of the type of platform. The whole Subsystem, therefore, typically consists of a root of trust for measuring
integrity metrics, plus a TPM, plus other functions (the Support Services, or SS) that do not have to be
trusted to function properly. Those other functions must still operate properly if the Subsystem is to
operate properly, but any misbehavior of the SS can be detected. Any misbehavior of the functions in a
root, or in the TPM, on the other hand, cannot be detected.

It is not the intention of this specification to specify the method of construction of either the Subsystem or
the TPM, provided that they meet the requirements of this specification. The following diagram is an
indication of the functional elements of a typical TPM.

End of informative comment.

2.2.1 Definitions
Root of Trust for Measurement (RTM)
The point from which all trust in the measurement process is predicated. The RTM contains many
components to provide this level of trust. The design document shows that the RTM includes a core
component, the computing engine to run the core component, physical connections of the core and the
computing engine and other items.

Core Root of Trust for Measurement (CRTM)
The component of the RTM from which the platform begins execution of its trusted state.

Root of Trust for Reporting (RTR)
The point from which all trust in reporting of measured information is predicated.

Root of Trust for Storing (RTS)
The point from which all trust in Protected Storage is predicated.

2.2.2 Instantiations and Trust Bindings

TCPA Main Specification Page 4

Version 1.1a 1 December 2001

 A Trusted Platform SHALL include the following:

• at least one root of trust for measuring integrity metrics,

• exactly one root of trust for storing and reporting integrity metrics,

• at least one Trusted Platform Measurement Store,

• at least one TCPA Validation Data, and

• exactly one Trusted Platform Agent.

The Endorsement Key is transitively bound to the Platform via the TPM as follows:

1. An Endorsement Key is bound to one and only one TPM (i.e., there is a one to one correspondence
between an Endorsement Key and a TPM.)

2. A TPM is bound to one and only one Platform. (i.e., there is a one to one correspondence between a
TPM and a Platform.)

3. Therefore, an Endorsement Key is bound to a Platform. (i.e., there is a one to one correspondence
between an Endorsement Key and a Platform.)

An instantiation of the root of trust for measuring integrity metrics, while acting as the root of trust for
measuring integrity metrics, SHALL do the following:

• execute no programs other than those intended by the entity that vouches for the root of trust for
measuring integrity metrics,

• be resistant to the forms of software attack and to the forms of physical attack implied by the
platform’s Protection Profile,

• accurately measure at least one integrity metric that indicates the software environment of a platform,

RNGHash

Hmac

Power detection

Asymmetric key generation

Asymmetric encryption co-processor

Computing engine

TPM-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

TPM-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

entity-owner memory

Nonce
Auth handle
Digest
Ephemeral secret

Keys
Private endorsement (2048b)
StorageRootKey (2048b)
Maintenance (2048b)
TPME-identity-key (2048b)

Authorisation (160b)
Owner

Flags
KillMaintenance
DisableOwnerReset
TPMStaticDisable

RNG-state-register (variable)
Data-integrity-register (DWORD)
MAC-secret (variable)

Programs (variable, large)

Non-volatile memory

Keys
Private endorsement (2048b)
StorageRootKey (2048b)
Maintenance (2048b)
TPME-identity-key (2048b)

Authorisation (160b)
Owner

Flags
KillMaintenance
DisableOwnerReset
TPMStaticDisable

RNG-state-register (variable)
Data-integrity-register (DWORD)
MAC-secret (variable)

Programs (variable, large)

Non-volatile memory

Parent key (2048b)
Child key (2048b)
Scratch pad

memory

Parent key (2048b)
Child key (2048b)
Scratch pad

memory

TPM contents

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PCRs (DWORDs)

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PlatformConfigurationRegister0

…….

PlatformConfigurationRegister7

PCRs (DWORDs)

TCPA Main Specification Page 5

Version 1.1a 1 December 2001

• accurately record measured integrity metrics to a root of trust for storing and reporting integrity
metrics, and

• accurately record details of the process of measuring all its integrity metrics to a Trusted Platform
Measurement Store.

An instantiation of the root of trust for storing and reporting integrity metrics SHALL do the following:

• be resistant to all forms of software attack and to the forms of physical attack implied by the platform’s
Protection Profile,

• accept recording of measured integrity metrics, and

• supply an accurate digest of all sequences of presented integrity metrics.

An instantiation of a Trusted Platform Measurement Store SHOULD do the following:

• accurately accept, store and supply details of at least one process of measuring an integrity metric.

An instantiation of the repository for TCPA Validation Data SHOULD do the following:

• accurately store and supply a predicted value of at least one integrity metric.

An instantiation of the Trusted Platform Agent SHOULD do the following:

• obtain and supply an accurate report from the root of trust for storing and reporting integrity metrics of
at least one sequence of integrity metrics in a form that prevents misrepresentation of that sequence
or its source,

• obtain and supply an accurate report from a Trusted Platform Measurement Store of at least one set
of details describing the measurement of an integrity metric, and

• obtain and supply an accurate report from the repository for TCPA Validation Data of at least one
predicted value of an integrity metric

2.3 Integrity Operations

2.3.1 Storage of Integrity Metrics
Start of informative comment:

This section introduces the way that sequences of values of integrity metrics are stored in a TPM. This
section does not describe the way that logs of the measurement process are stored in the Trusted
Platform Measurement Store.

Each entry in the log inside the Trusted Platform Measurement Store contains a description of a
measured entity plus an appropriate integrity metric that has been recorded inside a TPM. The log can be
used to reproduce the value of each sequence of integrity metrics inside the TPM. If the log and the TPM
are consistent and the TPM is trustworthy, the log can be trusted. If the values derived from the log and
the values reported by the TPM are the same, the log is presumed to be an accurate record of the steps
involved in building the software environment of the target platform. Consequently, the descriptions in the
log of the measured entities represent the actual entities that contributed to the software environment
inside the platform. Any difference between the values derived from the log and the values reported by
the TPM indicate an undesirable inconsistency in the state of the target platform.

TCPA Main Specification Page 6

Version 1.1a 1 December 2001

The mechanism used by the TPM to store sequences of values of integrity metrics is the subject of this
section. This method must be reproduced when verifying the consistency of the values derived from the
log and the values reported by the TPM.

A large number of integrity metrics may be measured in a platform, and a particular integrity metric may
change with time and a new value may need to be stored. It is difficult to authenticate the source of
measurement of integrity metrics, and as a result a new value of an integrity metric cannot be permitted to
simply overwrite an existing value. (A rogue could erase an existing value that indicates subversion and
replace it with a benign value.) Thus, if values of integrity metrics are individually stored, and updates of
integrity metrics must be individually stored, it is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The TCPA solution is not to store individual integrity metrics. Instead, a Trusted Platform provides a way
to store sequences of integrity metrics. Values of integrity metrics cannot be “stored” inside a TPM, and
must instead be appended to a sequence. The states of all sequences inside a TPM are set to a known
value at power-up. Each new integrity metric must be appended to a sequence and must modify the value
of that sequence. The actual TCPA method is to concatenate the value of a new integrity metric with the
existing value of the sequence, compute a digest of the concatenation, and use that digest as the new
representation of the sequence.

This method enables one or more sequences to represent an arbitrary number of integrity metrics and
their updates. The fewer the number of sequences, the more difficult it becomes to interpret the meaning
of the value of a sequence. The greater the number of sequences, the more costly it becomes to provide
storage. A particular implementation must make a trade-off between cost and difficulty of interpretation.

End of informative comment.

Integrity metrics that are presented to a TPM SHALL be stored inside that TPM in a way that prevents
misrepresentation of the presented values or of the sequence in which they were presented.

2.3.2 Reporting of Integrity Metrics
Start of informative comment:

This section introduces the way that sequences of integrity metrics are reported by a TPM.

An entity seeking to know the state of the computing environment inside a Trusted Platform depends
critically on the values of the integrity metrics. The integrity metrics enable an entity to determine the
consistency of the measurement information and compare the actual and expected states of the platform.

It follows, then, that the integrity metrics must be reported by a trusted mechanism. That trusted
mechanism is the TPM (which includes the root of trust for storing and reporting integrity metrics). The
TPM proclaims its trustworthiness by signing data, using one of its identities and conventional
cryptographic techniques. The signature key is known only to the TPM and is the private key of a key
pair. The corresponding public key is an identity key, since it is a cryptographic value by which the TPM is
known. Together, the signature key and the identity key are part of an identity of the TPM.

A person or (more probably) an organization vouches for the TPM by attesting to a TPM identity. Before
agreeing to provide attestation, the organization checks the construction credentials of the TPM, the
design credentials of the platform that incorporates the TPM, and the construction credentials of the
platform that incorporates the TPM. When the TPM reports the values of the sequences of integrity
metrics that it has stored, the TPM signs those values using a TPM identity. When an entity receives
signed data that originated in a TPM, the entity can verify that the data has not been changed in transit.
The entity can also check that the data was signed by a TPM identity and that an organization known to
the entity has attested to the TPM identity.

The TPM uses a conventional method to defeat replay attacks. That is, the entity provides a nonce that
the TPM concatenates with the sequence values, before signing the values, and the signed result is
returned by the Trusted Platform Agent to the entity. The actual capability provided by the TPM may be
considered to be an “integrity signature.” The TPM accepts arbitrary data, concatenates that arbitrary
data with the sequence values, and signs the concatenated data using the signature key of a TPM

TCPA Main Specification Page 7

Version 1.1a 1 December 2001

identity. When providing sequence values, that arbitrary data is simply a nonce that was provided by the
challenging entity. The signed data proves that the sequence values have been supplied by a “live” TPM.

At other times, the challenging entity may wish to obtain specific information from a Trusted Platform.
Then, the arbitrary data could be a digest of the specific information. The signed data proves the state of
the computing environment inside the Trusted Platform at the time that the specific information was
supplied.

End of informative comment.

Sequences of integrity metrics reported by the TPM SHALL be reported by that TPM in a way that
prevents misrepresentation of the sequences and prevents misrepresentation of the reporting TPM

2.4 Use of Keys Associated with TPM Identities
Start of informative comment:

The private key associated with a TPM identity is used only for signatures. Such signatures lend
credibility to signed data, because the data must have been signed by a TPM.

The private keys associated with TPM identities must be indelibly stored with flags that mark them as
belonging to TPM identities, in order that they can be distinguished from other types of keys. This is
necessary to enforce restrictions on the use of those keys.

TPM identities can be used to sign certain data, and a TPM must refuse to use private keys associated
with TPM identities for other purposes. Otherwise, a rogue may construct data (outside the TPM) that has
the same format as that used by the TPM for special operations, and cause a TPM to sign that data using
a private key associated with TPM identity. Such data would be misinterpreted as genuine data
constructed by the TPM for those special purposes, and could subvert the trust in those special purposes.
If the TPM prevents such a masquerade, a third party can always be certain that data (signed by a private
key associated with a TPM identity) was actually generated by a TPM for one of those special operations.

End of informative comment.

It MUST be possible to reliably distinguish between the private key of a TPM identity and other keys.

A key that is distinguished as the private key of a TPM identity SHALL NOT be used to generate a digital
signature value over data that could mimic the output of a TCPA protected capability.

A TPM SHALL NOT use a key that is distinguished as the private key of a TPM identity except during the
part of a TCPA “protected capability” whose specification permits and/or requires the use of a TPM
identity.

When signing on behalf of a TPM identity during the part of a TCPA protected capability whose
specification requires the signature of a TPM identity, a TPM SHALL NOT use a key other than one that
is distinguished as the private key of a TPM identity.

2.5 Cryptographic Operations
Start of informative comment:
This section introduces the use of cryptographic operations within the Subsystem. Note that this
specification does not include the AES. It is probable, however, that future versions of this specification
will include the AES.

The Subsystem employs conventional cryptographic operations in conventional ways. Those operations
include the following:

• Hashing (SHA-1)

• Random number generation (RNG)

• Asymmetric key generation (RSA)

TCPA Main Specification Page 8

Version 1.1a 1 December 2001

• Asymmetric encryption/decryption (RSA)

• Symmetric encryption/decryption (3DES)

The Subsystem uses these capabilities to perform generation of random data, generation of asymmetric
and symmetric keys, signing and confidentiality of stored data. The Subsystem also uses confidential
messaging for its own purposes, but does not provide a general-purpose symmetric confidentiality
service. This choice is deliberate, because the fundamental TCPA objective is to improve trust in a
general-purpose computing platform. Hence, TCPA provides only those functions that are necessary to
improve confidence in such a platform so that processing (including conventional security functions) on
the platform can be done with greater confidence.

The TPM contains the minimum set of capabilities that are required to be trusted. The TPM capabilities
must be trustworthy if the Subsystem is to be trusted. Other Subsystem capabilities must (of course)
function properly if the Subsystem is to work as expected.

The TPM contains the following crypto capabilities:

• Hashing (SHA-1)

• Random number generation (RNG)

• Asymmetric key generation (RSA)

• Asymmetric encryption/decryption (RSA)

Note that this list does not include symmetric encryption. This is for reasons of cost.

The hash capability is for use primarily by the TPM, since the TPM requires access to a trusted hash
function. The hash capability is exported by the TPM just to improve hash availability during the boot
phase of a platform, when the “RTM” and other measurement agents probably have restricted access to
the platform’s main processing engine.

The untrusted part of the Subsystem must include symmetric encryption functionality, but does not
include an RNG. The TSS may also include duplicate asymmetric key generation and asymmetric
encryption capabilities depending on the usefulness of TCPA protected capabilities to the TSS.

The Random Number Generator consists of a state-machine that accepts and mixes unpredictable data
and a post-processor that is a one-way function (such as a hash algorithm). This architecture is chosen to
provide a good source of random data without requiring that the TPM include a genuine source of
unpredictable data (which may be expensive).

The state-machine has non-volatile state, is initialized with unpredictable data before delivery to a
customer, and can at any time accept further (unpredictable) data. Such data may be provided by
hardware (from thermal noise, for example), or by software (monitoring keyboard strokes, for example).
Some such unpredictable data must be inserted every time that a platform boots. Naturally, a hardware
source is likely to supply data at a higher baud rate than a software source. That “further data” is mixed
into the existing state of the machine and as a result improves the unpredictability of the state of the
state-machine. Neither the Owner of the TPM nor the manufacturer of the TPM can deduce the state of
the state-machine. The post-processor is used to “condense” the output of the state-machine into data
that has sufficient and uniform entropy. (The one-way function will use more bits of input data than it
produces as output.)

End of informative comment.

2.6 Opting to use a TPM
Start of informative comment:

It is necessary to provide features that activate a TPM. This is for reasons of privacy.

A TPM is necessarily activated by a reset. This, however, causes the TPM to discard any existing secrets,
and puts the TPM into its virgin state, waiting for an Owner. It leaves the TPM vulnerable to ownership by

TCPA Main Specification Page 9

Version 1.1a 1 December 2001

anyone who knows the PUBEK of the TPM and can get a “take ownership” command to the TPM. To fail
safe, the true Owner would need to take ownership as soon as possible after a TPM has been reset. If
desired, the true Owner could then withhold the authorization information that is necessary to use the
TPM. Since a TPM can have only one Owner, this prevents any use of the TPM until the true Owner
decides to use it.

It is therefore desirable to provide methods that deactivate and activate a TPM without destroying existing
secrets. Then the Owner of the TPM (or a user) may deactivate the TPM in order to prevent inadvertent
use of the TPM, and later reactivate the TPM in order to use current secrets. It is also desirable to provide
methods that activate and deactivate the process of taking ownership, in case the true Owner does not
wish to take ownership (at least, not yet).

The TCPA specification defines a set of capabilities to enable/disable a TPM, activate/deactivate a TPM,
and enable/disable the process of taking ownership of the TPM.

The overall effect of the disabling capabilities is that a disabled TPM does little of value, apart from
keeping accurate records of integrity metrics and acknowledging that the TPM exists. A disabled TPM is,
therefore, effectively “off”.

The overall effect of the deactivating capabilities is that an inactive TPM does nothing, apart from keeping
accurate records of integrity metrics, acknowledging that the TPM exists, and permitting the process of
installing an owner in the TPM.

There are obviously many combinations of the particular states of TPM enabled/disabled, TPM
active/inactive, install-owner enabled/disabled. It may be that some suppliers will choose to supply a
virgin TPM that is enabled, active, and with “install owner” enabled, because that is what is required by
their customer. At the other extreme, if a virgin TPM is supplied in the disabled and inactive state, with
“take ownership” disabled, three steps are required in order to activate the TPM. One possible activation
sequence would be:

1. The prospective Owner should enable the TPM.

2. The prospective Owner should attempt to take ownership.

3. The prospective Owner should activate the TPM.

This particular sequence gives maximum control to the Owner, and permits verification that taking
ownership has succeeded, before the TPM is activated.

There are other possibilities between these two extremes. It may be that a virgin TPM is enabled but
inactive, with “take ownership” disabled, for example. This may be an advantage if the process of
enabling a TPM is non-trivial.

End of informative comment.

2.6.1 Enabling Ownership
Start of informative comment:

If a TPM does not have an Owner, it is desirable to provide a method that enables or disables the process
by which a prospective Owner takes ownership of a TPM. Ideally this method would work both locally and
remotely. Unfortunately authenticated commands cannot be interpreted by the TPM if it does not have an
Owner. Hence the method of enabling or disabling the process of taking ownership is a local command,
and no remote option is provided. (In a PC, these local controls could be made available during the
POST, for example.)

End of informative comment.

2.6.2 Activating a TPM
Start of informative comment:

TCPA Main Specification Page 10

Version 1.1a 1 December 2001

It is desirable to provide methods that activate or deactivate a TPM without permanently preventing
access to secrets protected by the TPM. The provision of deactivation methods exposes a denial-of-
service attack, but this is considered a worthwhile price to pay for improved privacy.

One method should certainly be the use of commands authorized by the Owner. This method has the
advantage that it proves possession of sufficient privilege, and can be used either locally or remotely. A
drawback of this method is that the platform must (probably) be fully active in order to communicate an
authorized command to a TPM. The concern is that the TPM may inadvertently be used inbetween the
platform becoming fully active and an authorized “deactivate” command being received by the TPM.
Another disadvantage is that it may be necessary to disable a TPM when the Owner is not available.
Other methods are, therefore, also required. The scope of these methods must reflect any uncertainty
about possession of sufficient privilege.

One method is required to operate before the platform is fully active. In these circumstances, it may be
difficult to check authorization. The method adopted by TCPA is to use software controls that are
remotely inaccessible. These are intended to provide local activation only (not remote activation), but this
depends upon the degree to which the control software is actually inaccessible to remote entities.

Another method is to required to operate when the platform is fully active, but without Owner
authorization. The method adopted by the TCPA is to use an unauthorized command that has a limited
effect – it can be used just to deactivate a TPM, and the effect lasts only until the platform is rebooted.

The method of final resort to activate a TPM is to use a physical (electrical) input to the TPM that cannot
be controlled by software executing on the main platform. This method (obviously) provides local
activation but not remote activation. This method is useful if no one has taken ownership, or the Owner’s
authorization has been lost, but one or more User authorization data are still known. In the latter case, the
TPM can be activated and Users can use their secrets to recover as much as possible of their data.

This specification uses four methods of activation (while retaining current TPM secrets):

1. A physical (electrical) input to the TPM that cannot be controlled by software executing on the main
platform. Enabling this physical input could involve opening of the platform and throwing a switch, or
activation of a physical lock, for example. Each use of the control causes a transitory activate event at
the TPM. This (obviously) provides local activation but not remote activation.

2. An authenticated command to the TPM from the Owner. This provides either local or remote
activation of the TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
activation and not remote activation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

4. A power-cycle of the platform. This is intended to provide local activation and not remote activation,
but that property depends upon the degree to which a reboot is actually inaccessible to remote
entities.

This specification uses three methods of deactivation (while retaining current TPM secrets):

1. An authenticated command to the TPM from the Owner. These provide either local or remote
deactivation of the TPM.

2. An unauthenticated command to the TPM. These provide either local or remote deactivation of the
TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
deactivation and not remote deactivation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

End of informative comment.

TCPA Main Specification Page 11

Version 1.1a 1 December 2001

2.6.3 Selected operations
Start of informative comment:

The methods to enable/disable a TPM, activate/deactivate a TPM, and enable/disable the process of
taking ownership of the TPM, can be combined in many ways. The selection made by TCPA is illustrated
in the following flowchart diagram, which illustrates a sequence of tests and decisions after Power-On-
Reset (POR):

Bit Flag name Flag type Action to set TRUE Action to set FALSE
1 TCPA_PERSISTENT_FLAGS.

disable
Non-volatile 1) Owner auth cmd

2) Local cmd
1) Owner auth cmd
2) physical action

2 TCPA_PERSISTENT_FLAGS.
ownership

Non-volatile Local cmd Local cmd

3 TCPA_PERSISTENT_FLAGS.
deactivated

Non-volatile Local cmd Local cmd

4 TCPA_VOLATILE_FLAGS.
deactivated

Volatile Unauth cmd Platform reboot

(BIT1) This may be set or reset by an Owner authorized command (TPM_SetOwnerInstall 8.13.1). It
may be set by a local command (TPM_PhysicalDisable 8.14.2). It may be reset by a physical
action (TPM_PhysicalEnable 8.14.3).

 These methods permit the Owner to disable the TPM when necessary (provided the TPM is
accepting authorized commands from the Owner); permit a User or a Owner to disable a TPM via

TCPA Main Specification Page 12

Version 1.1a 1 December 2001

local access to the platform; and permit a User or Owner to activate a TPM by the use of physical
access to the platform (which may or may not be trivial).

 The TPM is disabled by a command that has originated locally. It may be that this “local”
requirement restricts the operation of this command to times before an OS is running. The TPM is
also disabled by an Owner authorized command. It may be that this “authorization” requirement
restricts this command to times after the OS is running.

 The TPM can be enabled by a physical event at the platform (whether or not the TPM has an
Owner, and whether or not the OS is running). The TPM can also be enabled by an Owner
authorized command. It may be that this “authorization” requirement restricts this command to
times after the OS is running.

(BIT 2) This may be set or reset by a local command (TPM_SetOwnerInstall 8.13.1).

 This method permits a User or Owner to enable or disable the process of taking ownership, via
local access to the platform. It may be that this “local” requirement restricts the operation of this
command to times before an OS is running.

 (BIT 3) This may be set or reset by a local command (TPM_PhysicalSetDeactivated 8.15.1).

 This method permits a User or an Owner to set the default active/deactive state of a TPM via
local access to the platform. It may be that this “local” requirement restricts the operation of these
commands to times before an OS is running.

(BIT 4) This may be set by a local command (TPM_SetTempDeactivated 8.15.2). Any alteration lasts
until the next boot cycle, when this bit is initialized to the state of BIT3.

 This method permits a User or the Owner to temporarily deactivate the TPM. An unauthorized
command causes the TPM to enter an inactive state. The TPM remains in that state until the
platform is rebooted.

The default states of the persistent bits (BIT 1, 2, 3) in a virgin platform are the choice of the supplier. In a
platform where “physical access” involves opening the platform, a supplier may wish to set DISABLE-
TPM=FALSE, for example. In a platform where the supplier knows that the customer will use the
Subsystem, a supplier may wish to set DISABLED_OWNER_INSTALL=FALSE and
DEACTIVATED_TPM=FALSE, for example. In a platform where the supplier is uncertain whether the
customer will use the Subsystem, a supplier may wish to set DISABLED_OWNER_INSTALL=TRUE and
DEACTIVATED_TPM=TRUE, for example.

Both a disabled TPM and an inactive TPM never prevent the “extend” capability from operating. This is
necessary in order to ensure that the records of sequences of integrity metrics in a TPM are always up-to-
date.

End of informative comment.

TCPA Main Specification Page 13

Version 1.1a 1 December 2001

2.7 Protected, Unprotected, and Connection Operations
Start of informative comment:
All TCPA protected capabilities are provided by the TPM. The TPM requires the TSS to properly perform
it’s functions. The TSS by definition has NO security sensitive operations defined. Failure to properly
perform a TSS function may cause a TPM operation to fail but the failure will not result in a security
exposure.

TSS operations and protocols to support the TPM are defined in this specification as informative and
normative statements, only. More detailed aspects of those TSS operations, such as command and
parameter structures, may be defined in other TCPA specifications.

Connection Operations can be defined to enable TPM Operations such as those requiring physical
presence.

End of informative comment.

No operation outside the TPM SHALL affect the security of the TPM, only the ability of the TPM to
operate. TCPA Operations are classified as:

• Protected Operations Operations affecting the security properties of TCPA. These are
TPM Operations. These begin with TPM_

• Unprotected Operations Operations supporting the protected operations. These are
normally implemented outside the TPM. This begin with TSS_

• Connection Operations Operations affecting the connection of the platform to the TPM.
These are typically defined in the Platform Specific
specifications. These begin with TSC_.

TCPA Main Specification Page 14

Version 1.1a 1 December 2001

3. Protection

3.1 Introduction
Start of informative comment:

The Protection Profile in the Conformance part of the specification defines the threats that are resisted by
a platform. This section, “Protection,” describes the properties of selected capabilities and selected data
locations within a platform that has a Protection Profile and has not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded locations for
data. Every definition of a TCPA capability states whether it is a protected capability. Data definitions
state whether the data must be held in shielded locations.

• A protected capability is one whose correct operation is necessary in order for the operation of the
Subsystem to be trusted.

• A shielded location is an area where data is protected against interference and prying, independent of
its form.

This specification uses the concept of protected capabilities so as to distinguish those Subsystem
capabilities that must be trustworthy. Trust in the Subsystem depends critically on the protected
capabilities. Subsystem capabilities that are not protected capabilities must (of course) work properly if
the Subsystem is to function properly.

This specification uses the concept of shielded locations, rather than the concept of “shielded data.” While
the concept of shielded data is intuitive, it is extraordinarily difficult to define because of the imprecise
meaning of the word “data.” For example, consider data that is produced in a safe location and then
moved into ordinary storage. It is the same data in both locations, but in one it is shielded data and in the
other it is not. Also, data may not always exist in the same form. For example, it may exist as vulnerable
plaintext, but also may sometimes be transformed into a logically protected form. This data continues to
exist, but doesn't always need to be shielded data - the vulnerable form needs to be shielded data, but
the logically protected form does not. If a specific form of data requires protection against interference or
prying, it is therefore necessary to say “if the data-D exists, it must exist only in a shielded location.” A
more concise expression is “the data-D must be extant only in a shielded location.”

Hence if trust in the Subsystem depends critically on access to certain data, that data should be extant
only in a shielded location and accessible only to protected capabilities. When not in use, such data could
be erased after conversion (using a protected capability) into another data structure. Unless the other
data structure was defined as one that must be held in a shielded location, it need not be held in a
shielded location.

End of informative comment.

3.2 Threat
Start of informative comment:

This section, “Threat,” defines the scope of the threats that must be considered when considering
whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform facilitates
subversion of capabilities and data within that platform. It is necessary to define the attacks that must be
resisted by TCPA-shielded locations and TCPA-protected capabilities in that platform.

The TPM Protection Profile defines all attacks that are resisted by the TPM. These attacks must be
considered when determining whether the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations can be damaged. These attacks must be considered when determining whether there
is a backdoor method of obtaining access to TCPA-protected capabilities and data in TCPA-shielded
locations. These attacks must be considered when determining whether TCPA-protected capabilities
have undesirable side effects.

TCPA Main Specification Page 15

Version 1.1a 1 December 2001

End of informative comment.

For the purposes of the “Protection” section of the specification: the threats that MUST be considered
when determining whether the platform facilitates subversion of TCPA-protected capabilities or data in
TCPA-shielded locations SHALL include the methods inherent in physical attacks that should fail if the
platform complies with its protection profile, and SHALL include all methods that require execution of
instructions in a computing engine in the platform.

3.3 Integrity
Start of informative comment:
A TCPA-protected capability must be used to modify TCPA-protected capabilities or data in TCPA-
shielded locations. Other methods must not be allowed to modify TCPA-protected capabilities or data in
TCPA-shielded locations. Otherwise, the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations is unknown.

End of informative comment.
A platform SHALL NOT facilitate the alteration of TCPA-protected capabilities or data in TCPA-shielded
locations, except by TCPA-protected capabilities.

3.4 Privileged Access
Start of informative comment:

Only TCPA-protected capabilities are allowed to use the data in TCPA-shielded locations. Otherwise, a
rogue can pretend to be a TCPA entity.

End of informative comment.

A platform SHALL NOT facilitate the disclosure or the exposure of data in TCPA-shielded locations,
except to TCPA-protected capabilities.

3.5 Side effects
Start of informative comment:

An implementation of a TCPA-protected capability must not disclose the contents of TCPA-shielded
locations. The only exceptions are when such disclosure is inherent in the definition of the capability or in
the methods used by the capability. For example, a capability might be designed specifically to reveal
hidden data or might use cryptography and hence always be vulnerable to cryptanalysis. In such cases,
some disclosure or risk of disclosure is inherent and cannot be avoided. Other forms of disclosure (by
side effects, for example) must always be avoided.

End of informative comment.

The implementation of a TCPA-protected capability in a platform SHALL NOT facilitate the disclosure or
the exposure of data in TCPA-shielded locations except by means unavoidably inherent in the TCPA
definition.

TCPA Main Specification Page 16

Version 1.1a 1 December 2001

4. Structures and Defines
Start of informative comment:

The following structures and formats describe the interoperable areas of the specification. There is no
requirement that internal storage or memory representations of data must follow these structures. These
requirements are in place only during the movement of data from a TPM to some other entity.

End of informative comment.

4.1.1 Endness of Structures
Each structure MUST use big endian bit ordering, which follows the Internet standard and requires that
the low-order bit appear to the far right of a word, buffer, wire format, or other area and the high-order bit
appear to the far left.

4.1.2 Byte Packing
All structures MUST be packed on a byte boundary.

4.1.3 Lengths
The “Byte” is the unit of length when the length of a parameter is specified.

TCPA Main Specification Page 17

Version 1.1a 1 December 2001

4.2 Defines
Start of informative comment:
The defines are found in tcpa_defines.h.

End of informative comment.

4.2.1 Basic data types
Parameters

Typedef Name Description
unsigned char BYTE Basic byte used to transmit all character fields.

unsigned char BOOL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00

unsigned short UINT16 16 bit field. The definition in different architectures may
need to specify 16 bits instead of the short definition

unsigned long UINT32 32 bit field. The definition in different architectures may
need to specify 32 bits instead of the long definition

4.2.2 Boolean types
Name Value Description
TRUE 0x01 Assertion
FALSE 0x00 Contradiction

4.2.3 Helper redefinitions
The following definitions are to make the IDL definitions more explicit and easier to read.

Parameters

Typedef Name Description
UINT32 TCPA_PCRINDEX Index to a PCR register

UINT32 TCPA_DIRINDEX Index to a DIR register

UINT32 TCPA_AUTHHANDLE Handle to an authorization session

UINT32 TSS_HASHHANDLE Handle to a hash session

UINT32 TSS_HMACHHANDLE Handle to a HMAC session

UINT32 TCPA_ENCHANDLE Handle to a encryption/decryption session

UINT32 TCPA_KEY_HANDLE The area where a key is held assigned by the TPM.

UINT32 TCPA_RESULT The return code from a function

TCPA Main Specification Page 18

Version 1.1a 1 December 2001

4.2.4 Enumerated Helper redefinitions
Typedef Name Description
UINT32 TCPA_COMMAND_CODE The command ordinal. See 4.33

UINT16 TCPA_PROTOCOL_ID The protocol in use. See 4.17

UINT32 TCPA_EVENTTYPE Type of PCR event. See 4.25.2

BYTE TCPA_AUTH_DATA_USAGE Indicates the conditions where it is required that
authorization be presented. See 4.11

UNIT16 TCPA_ENTITY_TYPE Indicates the types of entity that are supported by the
TPM. See 4.15

UNIT32 TCPA_ALGORITHM_ID Indicates the type of algorithm. See 4.18

UNIT16 TCPA_KEY_USAGE Indicates the permitted usage of the key. See 4.10

UINT16 TCPA_STARTUP_TYPE Indicates the start state. See 4.16

UINT32 TCPA_CAPABILITY_AREA Identifies a TPM capability area. See 4.31

UINT16 TCPA_ENC_SCHEME The definition of the encryption scheme. See 8.4

UINT16 TCPA_SIG_SCHEME The definition of the signature scheme. See 8.5

UINT16 TCPA_MIGRATE_SCHEME The definition of the migration scheme 4.22

UINT16 TCPA_PHYSICAL_PRESENCE Sets the state of the physical presence mechanism. See
section 4.19

UINT32 TCPA_KEY_FLAGS Indicates information regarding a key. See 4.12

TCPA Main Specification Page 19

Version 1.1a 1 December 2001

4.2.5 Vendor specific
Start of informative comment:

For all items that can specify an individual algorithm, protocol or item the specification allows for vendor
specific selections. The mechanism to specify a vendor specific mechanism is to set the high bit of the
identifier on.

End of informative comment.

The following defines allow for the quick specification of a vendor specific item.

Parameters

Name Value
TCPA_Vendor_Specific32 0x80000000
TCPA_Vendor_Specific16 0x8000
TCPA_Vendor_Specific8 0x80

TCPA Main Specification Page 20

Version 1.1a 1 December 2001

4.3 Return codes
Start of informative comment:
The TPM has two types of returns, TCPA_SUCCESS where the TPM reports the results of a successful
function execution and the failure return.

The failure case only returns a non-authenticated fixed set of information. This is due to the fact that the
failure may have been due to authentication or other factors and there is no possibility of producing an
authenticated response.

Failures also terminate any authorization sessions. This is a result of returning only the error code as
there is no way to return and continue the nonce’s necessary to maintain an authorization session.

End of informative comment.
Description
When a command fails for ANY reason, the TPM MUST return only the following three items:

• TPM_TAG_RQU_COMMAND (2 bytes)

• ParamLength(4 bytes, fixed at 10)

• Return Code (4 bytes, never TCPA_SUCCESS)

If a return code is mandated by the action list of a command the TPM MUST return that error code. All
commands MAY return TPM_FAIL, where there is a more descriptive error code the TPM SHOULD use
the more descriptive error code.

The return code MUST be chosen from the following list.

Parameters

Name Value Description
TCPA_BASE 0x0 The start of TCPA return codes

TCPA_SUCCESS TCPA_BASE Successful completion of the operation

TCPA_VENDOR_ERROR TCPA_BASE +
TCPA_Vendor_Spec
ific32

These error codes are vendor specific for
vendor specific commands.

TCPA_AUTHFAIL TCPA_BASE + 1 Authentication failed

TCPA_BADINDEX TCPA_BASE + 2 The index to a PCR, DIR or other register is
incorrect

TCPA_BAD_PARAMETER TCPA_BASE + 3 One or more parameter is bad

TCPA_AUDITFAILURE TCPA_BASE + 4 An operation completed successfully but the
auditing of that operation failed.

TCPA_CLEAR_DISABLED TCPA_BASE + 5 The clear disable flag is set and all clear
operations now require physical access

TCPA_DEACTIVATED TCPA_BASE + 6 The TPM is deactivated

TCPA_DISABLED TCPA_BASE + 7 The TPM is disabled

TCPA_DISABLED_CMD TCPA_BASE + 8 The target command has been disabled

TCPA_FAIL TCPA_BASE + 9 The operation failed

TCPA_INACTIVE TCPA_BASE + 10 The TPM is inactive

TCPA Main Specification Page 21

Version 1.1a 1 December 2001

TCPA_INSTALL_DISABLED TCPA_BASE + 11 The ability to install an owner is disabled

TCPA_INVALID_KEYHANDL
E

TCPA_BASE + 12 The key handle presented was invalid

TCPA_KEYNOTFOUND TCPA_BASE + 13 The target key was not found

TCPA_NEED_SELFTEST TCPA_BASE + 14 The capability requires an untested function;
additional self-test is required before the
capability may execute.

TCPA_MIGRATEFAIL TCPA_BASE + 15 Migration authorization failed

TCPA_NO_PCR_INFO TCPA_BASE + 16 A list of PCR values was not supplied

TCPA_NOSPACE TCPA_BASE + 17 No room to load key.

TCPA_NOSRK TCPA_BASE + 18 There is no SRK set

TCPA_NOTSEALED_BLOB TCPA_BASE + 19 An encrypted blob is invalid or was not created
by this TPM

TCPA_OWNER_SET TCPA_BASE + 20 There is already an Owner

TCPA_RESOURCES TCPA_BASE + 21 The TPM has insufficient internal resources to
perform the requested action.

TCPA_SHORTRANDOM TCPA_BASE + 22 A random string was too short

TCPA_SIZE TCPA_BASE + 23 The TPM does not have the space to perform
the operation.

TCPA_WRONGPCRVAL TCPA_BASE + 24 The named PCR value does not match the
current PCR value.

TCPA_BUSY TCPA_BASE + 25 The TPM is too busy to respond to the
command

TCPA_SHA_THREAD TCPA_BASE + 26 There is no existing SHA-1 thread.

TCPA_SHA_ERROR TCPA_BASE + 27 The calculation is unable to proceed because
the existing SHA-1 thread has already
encountered an error.

TCPA_FAILEDSELFTEST TCPA_BASE + 28 Self-test has failed and the TPM has shutdown.

TCPA_AUTH2FAIL TCPA_BASE + 29 The authorization for the second key in a 2 key
function failed authorization

TCPA_BADTAG TCPA_BASE + 30 The tag value sent to for a command is invalid

TCPA_IOERROR TCPA_BASE + 31 An IO error occurred transmitting information to
the TPM

TCPA_ENCRYPT_ERROR TCPA_BASE + 32 The encryption process had a problem.

TCPA_DECRYPT_ERROR TCPA_BASE + 33 The decryption process did not complete.

TCPA_INVALID_AUTHHAND
LE

TCPA_BASE + 34 The auth handle was invalid

TCPA_NO_ENDORSEMENT TCPA_BASE + 35 The TPM does not a EK installed

TCPA_INVALID_KEYUSAGE TCPA_BASE + 36 The usage of a key is not allowed

TCPA_WRONG_ENTITYTYPE TCPA_BASE + 37 The submitted entity type is not allowed

TCPA_INVALID_POSTINIT TCPA_BASE + 38 The command was received in the wrong

TCPA Main Specification Page 22

Version 1.1a 1 December 2001

sequence relative to TPM_Init and a
subsequent TPM_Startup

TCPA Main Specification Page 23

Version 1.1a 1 December 2001

4.4 Command Specification Table Description

4.4.1 Introduction, Definition of Terms
• The parameter order column (PARAM) lists the order in which the parameters must be added to the

input or output array and their respective size. If this entry in the column is blank, then that parameter
is not sent to the TPM driver.

• <> in size column means that the size of the element is defined by the appropriate input parameter
(sizeInData controls inData). Where an explicit input ‘size’ parameter exists, it has been moved to
immediately precede the array to which it refers so that there is no confusion.

• When a null terminated string is included in a calculation, the terminating null SHALL NOT be
included in the calculation.

• The following rules concerning byte ordering within a parameter are consistent with Section 4.1 and
follow Internet standards:

1. Elements of a structure are marshaled in the order in which they appear in the document.

2. Byte arrays are marshaled starting with index 0, followed by index 1, and so on.

3. Integer types are marshaled most significant byte first.

4. No padding bytes are to be inserted at any point.

5. Bit ordering within the byte is determined by the IO channel in use.

• Parameters are marshaled into the input or output arrays according to the following order:

1. Tag specifier

2. Array length, including tag and length specifier bytes

3. Command ordinal and/or return code

4. Key handles

5. Remaining fixed length parameters

6. Remaining variable length parameters (with their size parameter)

7. If applicable, First authorization setup (authHandle – input only, then nonce, then
continueUse)

8. If applicable, First Authorization digest

9. If applicable, Second authorization setup

10. If applicable, Second authorization digest

4.4.2 HMAC Calculation for Authorization
• All authorized parameters other than the authorization setup parameters (authHandle, nonces and

continueUse) are hashed using SHA-1. This digest, referred to as <paramDigest> throughout this
document, is HMAC’d with the authorization setup parameters to form the authorization digest.

• Where there are two authorization sessions within a single command (changeAuth, etc.) the two
HMACs are computed using the common <paramDigest> but their respective setup parameters only.

1. AuthDigest1 = HMAC(<paramDigest>, EvenNonce1, OddNonce1, continueUse1)

2. AuthDigest2 = HMAC(<paramDigest>, EvenNonce2, OddNonce2, continueUse2)

• The comment after the HMAC authorization digest includes the source of the HMAC key for the
digest. If the authorization session is of type OSAP, then the actual key is the sharedSecret that was

TCPA Main Specification Page 24

Version 1.1a 1 December 2001

derived from the secret listed in the comment. For OIAP sessions, the HMAC key is the listed secret
directly.

• In the tables below, the order of computation of the SHA1 hash and HMACs are shown in the HMAC
column. The subscript ‘S’ refers to parameters that are hashed together using SHA1 to form
<paramDigest>. The subscripts ‘H1’ & ‘H2’ refer to parameters that are HMAC’d to form the first and
second authorization digests.

• Note that as the first element to the HMAC calculation is <paramDigest>, HMAC element numbers
start with 2 in all cases below.

• In all cases, both input and output, the HMAC calculation uses the following order:

1. <paramDigest>

2. Even nonce (generated by TPM)

3. Odd nonce (generated by system)

4. ContinueUse

4.4.3 Parameter List Tag Identifiers

Tag Name Description
0x00C1 TPM_TAG_RQU_COMMAND A command with no authentication.
0x00C2 TPM_TAG_RQU_AUTH1_COMMAND An authenticated command with one

authentication handle
0x00C3 TPM_TAG_RQU_AUTH2_COMMAND An authenticated command with two

authentication handles
0x00C4 TPM_TAG_RSP_COMMAND A response from a command with no

authentication
0x00C5 TPM_TAG_RSP_AUTH1_COMMAND An authenticated response with one

authentication handle
0x00C6 TPM_TAG_RSP_AUTH2_COMMAND An authenticated response with two

authentication handles

TCPA Main Specification Page 25

Version 1.1a 1 December 2001

4.5 TCPA_VERSION
Start of informative comment:
The TCPA_VERSION allows the TPM to communicate with outside entities as to the version of the TPM.
This structure is set by the TPM and included in structures that are maintained long term outside of the
TPM.

End of informative comment.
IDL Definition

typedef struct tdTCPA_VERSION {
BYTE major;
BYTE minor;
BYTE revMajor;
BYTE revMinor;

} TCPA_VERSION;

Parameters

Type Name Description
BYTE major This SHALL be the major version indicator. For version 1 this MUST be 0x01

BYTE minor This SHALL be the minor version indicator. For version 1 this MUST be 0x01

BYTE revMajor This SHALL be the value of the TCPA_PERSISTENT_DATA -> revMajor

BYTE revMinor This SHALL be the value of the TCPA_PERSISTENT_DATA -> revMinor

Descriptions

The version points to the version of the specification that defines the structure.

If the validity of a structure depends on conformity to a version of the specification and/or to a version of
the TPM, that structure SHALL include the current instance of TCPA_VERSION

TCPA Main Specification Page 26

Version 1.1a 1 December 2001

4.6 TCPA_DIGEST
Start of informative comment:
The digest value reports the result of a hash operation. In Version 1.0 of this specification the hash
algorithm is SHA-1 with a resulting hash result being 160 bits. This lack of flexibility is because the size of
a digest has a dramatic effect on the implementation of a hardware TPM.

End of informative comment.
Definition
typedef struct tdTCPA_DIGEST{

BYTE digest[digestSize];
} TCPA_DIGEST;

Parameters

Type Name Description
BYTE digest This SHALL be the actual digest information

Description

The digestSize parameter MUST indicate the block size of the algorithm and MUST be 20 or greater.

For all TCPA v1 hash operations, the hash algorithm MUST be SHA-1 and the digestSize parameter is
therefore equal to 20.

Redefinitions

Typedef Name Description
TCPA_DIGEST TCPA_PCRVALUE The value inside of the PCR

TCPA_DIGEST TCPA_COMPOSITE_HASH This SHALL be the hash of a list of PCR indexes
and PCR values that a key or data is bound to (See
10.4.5 for details)

TCPA_DIGEST TCPA_DIRVALUE This SHALL be the value of a DIR register

TCPA_DIGEST TCPA_HMAC

TCPA_DIGEST TCPA_CHOSENID_HASH This SHALL be the digest of the chosen
identityLabel and privacyCA for a new TPM identity.
See 10.4.6 for details.

TCPA Main Specification Page 27

Version 1.1a 1 December 2001

4.7 TCPA_NONCE
Start of informative comment:
A nonce is a random value that provides protection from replay and other attacks. Many of the commands
and protocols in the specification require a nonce. This structure provides a consistent view of what a
nonce is.

End of informative comment.
Definition
typedef struct tdTCPA_NONCE{

BYTE nonce[20];
} TCPA_NONCE;

Parameters

Type Name Description
BYTE nonce This SHALL be the 20 bytes of random data. When created by the TPM

the value MUST be the next 20 bytes from the RNG.

TCPA Main Specification Page 28

Version 1.1a 1 December 2001

4.8 TCPA_AUTHDATA
Start of informative comment:
The authorization data is the information that is saved or passed to provide proof of ownership of an
entity. For version 1 this area is always 20 bytes.

End of informative comment.
Definition
typedef BYTE tdTCPA_AUTHDATA[20];
Parameters
None.
Descriptions

When sending authorization data to the TPM the TPM does not validate the decryption of the data. It is
the responsibility of the entity owner to validate that the authorization data was properly received by the
TPM. This could be done by immediately attempting to open an authorization session.

The owner of the data can select any value for the data

Redefinitions

Typedef Name Description
TCPA_AUTHDATA TCPA_SECRET A secret plaintext value used in the authorization process.

TCPA_AUTHDATA TCPA_ENCAUTH A ciphertext (encrypted) version of authorization data. The
encryption mechanism depends on the context.

TCPA Main Specification Page 29

Version 1.1a 1 December 2001

4.9 TCPA_KEY_HANDLE_LIST
Start of informative comment:
TCPA_KEY_HANDLE_LIST is a structure used to describe the handles of all keys currently loaded into a
TPM. See 8.11.1.

End of informative comment.
IDL Definition
typedef struct tdTCPA_KEY_HANDLE_LIST {

UINT16 loaded;
[size_is(loaded)] TCPA_KEY_HANDLE handle[];

} TCPA_KEY_HANDLE_LIST;

Parameters

Type Name Description

UINT16 loaded The number of keys currently loaded in the TPM.

UINT32 handle An array of handles, one for each key currently loaded in the TPM

Description

The order in which keys are reported is manufacturer-specific.

TCPA Main Specification Page 30

Version 1.1a 1 December 2001

4.10 TCPA_KEY_USAGE values
Start of informative comment:
This table defines the types of keys that are possible.

Each key has a setting defining the encryption and signature scheme to use. The selection of a key
usage value limits the choices of encryption and signature schemes.

End of informative comment.

Name Value Description
TPM_KEY_SIGNING 0x0010 This SHALL indicate a signing key. The [private] key SHALL be

used for signing operations, only. This means that it MUST be a
leaf of the Protected Storage key hierarchy.

TPM_KEY_STORAGE 0x0011 This SHALL indicate a storage key. The key SHALL be used to
wrap and unwrap other keys in the Protected Storage hierarchy,
only.

TPM_KEY_IDENTITY 0x0012 This SHALL indicate an identity key. The key SHALL be used for
operations that require a TPM identity, only.

TPM_KEY_AUTHCHANGE 0X0013 This SHALL indicate an ephemeral key that is in use during the
ChangeAuthAsym process, only.

TPM_KEY_BIND 0x0014 This SHALL indicate a key that can be used for TPM_Bind and
TPM_Unbind operations only.

TPM_KEY_LEGACY 0x0015 This SHALL indicate a key that can perform signing and binding
operations. The key MAY be used for both signing and binding
operations. The TPM_KEY_LEGACY key type is to allow for use
by applications where both signing and encryption operations
occur with the same key. The use of this key type is deprecated.

TCPA Main Specification Page 31

Version 1.1a 1 December 2001

4.10.1 Mandatory Key Usage Schemes
Start of Informative Comment:

For a given key usage type there are subset of valid encryption and signature schemes.

End of informative comment

The key usage value for a key determines the encryption and / or signature schemes which MUST be
used with that key. The table below maps the schemes defined by this specification to the defined key
usage values. See sections 8.4 and 8.5.

Name Allowed Encryption schemes Allowed Signature Schemes
TPM_KEY_SIGNING TCPA_ES_NONE TCPA_SS_RSASSAPKCS1v15_SHA1

TCPA_SS_RSASSAPCKS1V15_DER

TPM_KEY_STORAGE TCPA_ES_RSAESOAEP_SHA1_MGF1 TCPA_SS_NONE

TPM_KEY_IDENTITY TCPA_ES_NONE TCPA_SS_RSASSAPKCS1v15_SHA1

TPM_KEY_AUTHCHANGE TCPA_ES_RSAESOAEP_SHA1_MGF1 TCPA_SS_NONE

TPM_KEY_BIND TCPA_ES_RSAESOAEP_SHA1_MGF1

TCPA_ES_RSAESPKCSV15

TCPA_SS_NONE

TPM_KEY_LEGACY TCPA_ES_RSAESOAEP_SHA1_MGF1

TCPA_ES_RSAESPKCSV15

TCPA_SS_RSASSAPKCS1v15_SHA1

TCPA_SS_RSASSAPKCS1V15_DER

Where manufacturer specific schemes are used, the strength must be at least that listed in the above
table for TPM_KEY_STORAGE, TPM_KEY_IDENTITY and TPM_KEY_AUTHCHANGE key types.

TCPA Main Specification Page 32

Version 1.1a 1 December 2001

4.11 TCPA_AUTH_DATA_USAGE values
Start of informative comment:
The indication to the TPM when authorization sessions for an entity are required. The only two options at
this time are always or never. Future versions may allow for more complex decisions regarding
authorization checking.

End of informative comment.

Name Value Description
TPM_AUTH_NEVER 0x00 This SHALL indicate that usage of the key without authorization is

permitted.

TPM_AUTH_ALWAYS 0x01 This SHALL indicate that on each usage of the key the
authorization MUST be performed.

All other values are reserved for future use.

TCPA Main Specification Page 33

Version 1.1a 1 December 2001

4.12 TCPA_KEY_FLAGS
Start of informative comment:
This table defines the meanings of the bits in a TCPA_KEY_FLAGS structure, used in
TCPA_STORE_ASYMKEY and TCPA_CERTIFY_INFO.

End of informative comment.

TCPA_KEY_FLAGS Values

Name Mask Value Description
redirection 0x00000001 This mask value SHALL indicate the use of redirected output.

migratable 0x00000002 This mask value SHALL indicate that the key is migratable.

volatileKey 0x00000004 This mask value SHALL indicate that the key MUST be unloaded
upon execution of the TPM_Init/TPM_Startup sequence.

The value of TCPA_KEY_FLAGS MUST be decomposed into individual mask values. The presence of a
mask value SHALL have the effect described in the above table

TCPA Main Specification Page 34

Version 1.1a 1 December 2001

4.13 Flags and persistent data structures
Informative comment
The TPM maintains flags in volatile and non-volatile areas. These flags indicate the status of TPM-
enabling, TPM-ownership and TPM-activation. The TPM also maintains data in volatile and non-volatile
areas. Only certain data are required to be stored in non-volatile areas (other data may be stored in non-
volatile areas, but are not required to be stored in non-volatile areas).

The setting of flags requires either authorization by the TPM Owner or the assertion of physical presence
at the platform. The nature of assertion of physical presence is a manufacturer option. There are many
methods of making the assertion and manufacturers can select any number of options. The underlying
theme is that no remote entity should be able to change the status of the TPM without either knowledge
of the TPM Ownership authentication or physical presence next to the platform.

One method of providing the physical presence assertion is to have the TPM accept commands during a
period when the operation of the platform is constrained. In a PC, the method might operate during the
POST and require input from the user via the keyboard. The TPM would allow access to the command
until execution of some critical point and the POST process informed the TPM that it should no longer
accept the commands.

End of informative comment.

TCPA Main Specification Page 35

Version 1.1a 1 December 2001

4.13.1 TCPA persistent data
Informative comment

Purely for the convenience of listing such data together, this structure contains the minimum set of TCPA
data that are required to be persistent.

End of informative comment.
IDL Definition
typedef struct tdTCPA_PERSISTENT_DATA{

BYTE revMajor;
BYTE revMinor;
TCPA_NONCE tpmProof;
TCPA_PUBKEY manuMaintPub;
TCPA_KEY endorsementKey;
TCPA_SECRET ownerAuth;
TCPA_KEY srk;
TCPA_DIRVALUE* dir;
BYTE* rngState;
BYTE ordinalAuditStatus;

}TCPA_PERSISTENT_DATA;

Type
These data exist in TPM shielded-locations, only, and SHALL be non-volatile. Other TCPA data MAY be
persistent, except when specifically prohibited (by an IsVolatile flag, for example).

Description

Types of Persistent Data

Type Name Description

BYTE revMajor This is the TPM major revision indicator. This SHALL be
set by the TPME, only. The default value is
manufacturer-specific.

BYTE revMinor This is the TPM minor revision indicator. This SHALL be
set by the TPME, only. The default value is
manufacturer-specific.

TCPA_NONCE tpmProof This is a random number that each TPM maintains to
validate blobs in the SEAL and other processes. The
default value is manufacturer-specific.

TCPA_PUBKEY manuMaintPub This is the manufacturer’s public key to use in the
maintenance operations. The default value is
manufacturer-specific.

TCPA_KEY endorsementKey This is the TPM’s endorsement key pair. See 9.2. The
default value is manufacturer-specific.

TCPA_SECRET ownerAuth This is the TPM-Owner’s authorization data. See 5.11.1.
The default value is manufacturer-specific.

TCPA_KEY srk This is the TPM’s StorageRootKey. See 5.11.1. The
default value is manufacturer-specific.

TCPA_DIRVALUE* dir These are the DataIntegrityRegisters. There MUST be
at least one DIR. See, for example, 6.3.4. The default

TCPA Main Specification Page 36

Version 1.1a 1 December 2001

value of a DIR is zero.

BYTE* rngState State information describing the random number
generator. The default state and subsequent states are
described in 10.5.

BYTE[] ordinalAuditStat
us

Table indicating which ordinals are being audited. See
section 8.12

TCPA Main Specification Page 37

Version 1.1a 1 December 2001

4.13.2 TCPA_PERSISTENT_FLAGS Structure
Start of informative comment:

The persistent flags allow the TPM to maintain internal state across TPM_Init cycles. These flags include
flags to indicate activation status and physical presence requirements.

The TPM allows two methods for providing proof of physical presence: hardware and command. The
platform manufacturer decides which to provide or allow by setting the values for
physicalPresenceHWEnable and physicalPresenceCMDEnable based in the design of the platform and
customer requirements. Once set, the manufacturer must lock their states by setting the
physicalPresenceLifetimeLock.

The logical ORing of the hardware signal with the PhysiallyPresence flags allows the platform
manufacturer to: Allow either method to override the other, Allow one method exclusively, Or disallow
both, preventing the local commands from ever executing.

End of informative comment.
typedef struct tdTCPA_PERSISTENT_FLAGS{

BOOL disable;
BOOL ownership;
BOOL deactivated;
BOOL readPubek;
BOOL disableOwnerClear;
BOOL allowMaintenance;
BOOL physicalPresenceLifetimeLock;
BOOL physicalPresenceHWEnable;
BOOL physicalPresenceCMDEnable;
BOOL CEKPUsed;

} TCPA_PERSISTENT_FLAGS;

Type
TPM shielded location: These flags exist only in a TPM shielded-location and SHALL be non-volatile.
Other flags MAY be persistent, except when specifically prohibited.

Parameters

Type Name Description
BOOL disable The state of the disable flag. See 8.14. The default state is

TRUE

BOOL ownership The ability to install an owner. See 8.12.5. The default state
is TRUE.

BOOL deactivated The state of the inactive flag. See 8.15. The default state is
TRUE.

BOOL readPubek The ability to read the PUBEK without owner authorization.
See 9.2.2. The default state is TRUE.

BOOL disableOwnerClear Whether the owner authorized clear commands are active.
See 8.10.6. The default state is FALSE.

BOOL allowMaintenance Whether the TPM Owner may create a maintenance
archive. See 7.3.1. The default state is TRUE.

BOOL physicalPresenceLifetim
eLock

This bit can only be set to TRUE; it cannot be set to FALSE
except during the manufacturing process.

FALSE: The state of either physicalPresenceHWEnable or

TCPA Main Specification Page 38

Version 1.1a 1 December 2001

physicalPresenceCMDEnable MAY be changed.
(DEFAULT)

TRUE: The state of either physicalPresenceHWEnable or
physicalPresenceCMDEnable MUST NOT be changed for
the life of the TPM.

BOOL physicalPresenceHWEnabl
e

FALSE: Disable the hardware signal indicating physical
presence. (DEFAULT)

TRUE: Enables the hardware signal indicating physical
presence.

BOOL physicalPresenceCMDEnab
le

FALSE: Disable the command indicating physical presence.
(DEFAULT)

TRUE: Enables the command indicating physical presence.

BOOL CEKPUsed TRUE: The PRIVEK and PUBEK were created using
TPM_CreateEndorsementKeyPair.

FALSE: The PRIVEK and PUBEK were created using a
manufacturers process.

NOTE: This flag has no default value as the key pair MUST
be created by one or the other mechanism.

Description
The data structure TCPA_PERSISTENT_FLAGS SHALL exist in a TPM shielded-location, only, and
SHALL be non-volatile.

The physicalPresenceHWEnable and physicalPresenceCMDEnable flags MUST mask their respective
signals before further processing. The hardware signal, if enabled by the physicalPresenceHWEnable
flag, MUST be logically ORed with the PhysicalPresence flag, if enabled, to obtain the final physical
presence value used to allow or disallow local commands.

Actions
1. Disable flag

a. If disable has the value of TRUE the following commands will execute with their normal
protections

i. TPM_Reset

ii. TPM_Init

iii. TPM_Startup

iv. TPM_SaveState

v. TPM_SHA1Start

vi. TPM_SHA1Update

vii. TPM_SHA1Complete

viii. TPM_SHA1CompleteExtend

ix. TSC_PhysicalPresence

x. TPM_OIAP

xi. TPM_OSAP

TCPA Main Specification Page 39

Version 1.1a 1 December 2001

xii. TPM_GetCapability

xiii. TPM_Extend

xiv. TPM_OwnerSetDisable

xv. TPM_PhysicalEnable

xvi. TPM_ContinueSelfTest

xvii. TPM_SelfTestFull

xviii. TPM_GetTestResult

b. All other commands SHALL return TCPA_DISABLED.

2. Ownership flag
a. If ownership has the value of FALSE, then any attempt to install an owner fails with the error

value TCPA_INSTALL_DISABLED.

3. Deactivated flag
a. This flag sets the state of TCPA_VOLATILE_FLAGS -> deactivated upon initialization.

4. readPubek
a. If readPubek is TRUE then the TPM_ReadPubek will return the PUBEK, if FALSE the

command will return TCPA_DISABLED_CMD.

5. DisableOwnerClear
a. If disableOwnerClear is TRUE then the clear commands requiring owner authorization will

return TCPA_CLEAR_DISABLED, if false the commands will execute.

TCPA Main Specification Page 40

Version 1.1a 1 December 2001

4.13.3 TCPA_VOLATILE_FLAGS Structure
Start of informative comment:

Despite its name, the data structure TCPA_VOLATILE_FLAGS may be stored in non-volatile media. To
do so may or may not be advantageous, depending on circumstances. If TCPA_VOLATILE_FLAGS is
held in non-volatile storage, the operation of TPM_SaveState is simplified.

TPM_Extend is not permitted to operate when a TPM is deactivated. This is because a deactivated TPM
performs no useful service until a platform is rebooted, at which point the PCRs are reset.

TPM_GetCapability and TPM_CreateEndorsementKey may be called before TPM_Startup. This is
necessary because TPM_Startup will fail unless an endorsement key exists.

Updating auditDigest is unnecessary when a TPM is deactivated. This is because a deactivated TPM
performs no useful service until a platform is rebooted, at which point the auditDigest is reset.

 End of informative comment.

IDL Definition
typedef struct tdTCPA_VOLATILE_FLAGS{

BOOL deactivated;
BOOL disableForceClear;
BOOL physicalPresence;
BOOL physicalPresenceLock;
BOOL postInitialise;

} TCPA_VOLATILE_FLAGS;

Type
TPM shielded location

Parameters

Type Name Description

BOOL deactivated Prevents the operation of most capabilities. There is no
default state. It is initialized by TPM_Startup to the same
value as TCPA_PERSISTENT_FLAGS -> deactivated.
TPM_SetTempDeactivated sets it to TRUE.

BOOL disableForceClear Prevents the operation of TPM_ForceClear when TRUE.
The default state is FALSE. TPM_DisableForceClear sets it
to TRUE.

BOOL physicalPresence Indicates that a User is physically present when TRUE. The
default state is FALSE (User is not physically present)

BOOL physicalPresenceLock Indicates whether changes to the physicalPresence flag are
permitted. TPM_Startup/ST_CLEAR sets PhysicalPresence
to its default state of FALSE (allow changes to
PhysicalPresence flag). The meaning of TRUE is: Do not
allow further changes to PhysicalPresence flag.
TSC_PhysicalPresence can change the state of
physicalPresenceLock.

BOOL postInitialise Prevents the operation of most capabilities. There is no
default state. It is initialized by TPM_Init to TRUE.

TCPA Main Specification Page 41

Version 1.1a 1 December 2001

TPM_Startup sets it to FALSE.

Description
The data structure TCPA_VOLATILE_FLAGS SHALL exist only in a TPM shielded-location.

The data structure TCPA_VOLATILE_FLAGS MAY be held in non-volatile storage.

Actions
1. Deactivated flag

a. If deactivated is TRUE the following commands SHALL execute with their normal protections

i. TPM_Reset

ii. TPM_Init

iii. TPM_Startup

iv. TPM_SaveState

v. TPM_SHA1Start

vi. TPM_SHA1Update

vii. TPM_SHA1Complete

viii. TPM_SHA1CompleteExtend

ix. TSC_PhysicalPresence

x. TPM_OIAP

xi. TPM_OSAP

xii. TPM_GetCapability

xiii. TPM_TakeOwnership

xiv. TPM_OwnerSetDisable

xv. TPM_PhysicalDisable

xvi. TPM_PhysicalEnable

xvii. TPM_PhysicalSetDeactivated

xviii. TPM_ContinueSelfTest

xix. TPM_SelfTestFull

xx. TPM_GetTestResult

b. All other commands SHALL return TCPA_DEACTIVATED.

2. DisableForceClear
If disableForceClear is TRUE then the TPM_ForceClear command returns
TCPA_CLEAR_DISABLED, if FALSE then the command will execute.

3. PhysicalPresence
If physicalPresence is TRUE and TCPA_PERSISTENT_FLAGS -> physicalPresenceCMDEnable
is TRUE, the TPM MAY assume that the Owner is physically present. If physicalPresence is
FALSE, the TPM MUST assume that the Owner is physically absent. Note that this
physicalPresence is exclusive of the unambiguous physical presence indication required for
TPM_PhysicalEnable. They MAY be the same hardware signal depending on the design of the
platform and TPM.

TCPA Main Specification Page 42

Version 1.1a 1 December 2001

4. physicalPresenceLock
If physicalPresenceLock is TRUE, TSC_PhysicalPresence MUST NOT change the
physicalPresence flag. If physicalPresenceLock is FALSE, TSC_PhysicalPresence will operate.

5. postInitialise
a. If postInitialise is TRUE the following commands SHALL execute with their normal

protections:

i. TPM_Startup

ii. TPM_CreateEndorsementKey

iii. TPM_GetCapability

iv. TPM_ContinueSelfTest

v. TPM_SelfTestFull

vi. TPM_GetTestResult

b. All other commands SHALL set the flag TCPA_VOLATILE_FLAGS -> postInitialise to FALSE,
set TCPA_VOLATILE_FLAGS -> deactivated to TRUE, and return
TCPA_INVALID_POSTINIT

TCPA Main Specification Page 43

Version 1.1a 1 December 2001

4.14 TCPA_PAYLOAD_TYPE
Start of informative comment:
This structure specifies the type of payload in various messages.

End of informative comment.
Definition
typedef unsigned char TCPA_PAYLOAD_TYPE;

TCPA_PAYLOAD_TYPE Values

Value Name Comments

0x01 TCPA_PT_ASYM The entity is an asymmetric key

0x02 TCPA_PT_BIND The entity is bound data

0x03 TCPA_PT_MIGRATE The entity is a migration blob

0x04 TCPA_PT_MAINT The entity is a maintenance blob

0x05 TCPA_PT_SEAL The entity is sealed data

0x06 – 0x7F Reserved for future use by TCPA

0x80 – 0xFF Vendor specific payloads

TCPA Main Specification Page 44

Version 1.1a 1 December 2001

4.15 TCPA_ENTITY_TYPE
Start of informative comment:
This specifies the types of entity that are supported by the TPM.

End of informative comment.

TCPA_ENTITY_TYPE Values

Value Event Name Comments

0x0001 TCPA_ET_KEYHANDLE The entity is a keyHandle

0x0002 TCPA_ET_OWNER The entity is the TPM Owner

0x0003 TCPA_ET_DATA The entity is some data

0x0004 TCPA_ET_SRK The entity is the SRK

0x0005 TCPA_ET_KEY The entity is a key

Description

For the entity type of TCPA_ET_OWNER the associated key handle MUST be 0x40000001

For the entity type of TCPA_ET_SRK the associated key handle MUST be 0x40000000

TCPA Main Specification Page 45

Version 1.1a 1 December 2001

4.16 TCPA_STARTUP_TYPE
Start of informative comment:
To specify what type of startup is occurring.

End of informative comment.

TCPA_STARTUP_TYPE Values

Value Event Name Comments

0x0001 TCPA_ST_CLEAR The TPM is starting up from a clean state

0x0002 TCPA_ST_STATE The TPM is starting up from a saved state

0x0003 TCPA_ST_DEACTIVATED The TPM is to startup and set the deactivated flag to
TRUE

TCPA Main Specification Page 46

Version 1.1a 1 December 2001

4.17 TCPA_PROTOCOL_ID
Start of informative comment:
This value identifies the protocol in use.

End of informative comment.
Definition
typedef UINT16 TCPA_PROTOCOL_ID;

TCPA_PROTOCOL_ID Values

Value Event Name Comments

0x0001 TCPA_PID_OIAP The OIAP protocol. See 5.2.1

0x0002 TCPA_PID_OSAP The OSAP protocol. See 5.2.4

0x0003 TCPA_PID_ADIP The ADIP protocol. See 5.4

0X0004 TCPA_PID_ADCP The ADCP protocol. See 5.6

0X0005 TCPA_PID_OWNER The protocol for taking ownership of a TPM. See 5.11

TCPA Main Specification Page 47

Version 1.1a 1 December 2001

4.18 TCPA_ALGORITHM_ID
Start of informative comment:
This table defines the types of algorithms which may be supported by the TPM.

End of informative comment.
Definition
TCPA_ALGORITHM_ID values

Name Value Description

TCPA_ALG_RSA 0x00000001 The RSA algorithm.

TCPA_ALG_DES 0x00000002 The DES algorithm

TCPA_ALG_3DES 0X00000003 The 3DES algorithm

TCPA_ALG_SHA 0x00000004 The SHA1 algorithm

TCPA_ALG_HMAC 0x00000005 The RFC 2104 HMAC algorithm

TCPA_ALG_AES 0x00000006 The AES algorithm

The TPM MUST support the algorithms TCPA_ALG_RSA, TCPA_ALG_SHA, TCPA_ALG_HMAC.

TCPA Main Specification Page 48

Version 1.1a 1 December 2001

4.19 TCPA_PHYSICAL_PRESENCE
Name Value Description
TCPA_PHYSICAL_PRESENCE_LIFETIME_L
OCK

0x0080h Sets the physicalPresenceLifetimeLock
to TRUE

TCPA_PHYSICAL_PRESENCE_HW_ENABLE 0x0040h Sets the physicalPresenceHWEnable to
TRUE

TCPA_PHYSICAL_PRESENCE_CMD_ENABLE 0x0020h Sets the physicalPresenceCMDEnable
to TRUE

TCPA_PHYSICAL_PRESENCE_NOTPRESENT 0x0010h Sets PhysicalPresence = FALSE

TCPA_PHYSICAL_PRESENCE_PRESENT 0x0008h Sets PhysicalPresence = TRUE

TCPA_PHYSICAL_PRESENCE_LOCK 0x0004h Sets PhysicalPresenceLock = TRUE

TCPA Main Specification Page 49

Version 1.1a 1 December 2001

4.20 TCPA_KEY_PARMS
Start of informative comment:
This provides a standard mechanism to define the parameters used to generate a key pair, and to store
the parts of a key shared between the public and private key parts.

End of informative comment.
Definition
typedef struct tdTCPA_KEY_PARMS {

TCPA_ALGORITHM_ID algorithmID;
TCPA_ENC_SCHEME encScheme;
TCPA_SIG_SCHEME sigScheme;
UINT32 parmSize;
[size_is(parmSize)] BYTE* parms;

} TCPA_KEY_PARMS;

Parameters

Type Name Description

TCPA_ALGORITHM_ID algorithmID This SHALL be the key algorithm in use

UINT32 parmSize This SHALL be the size of the parms field in bytes

TCPA_ENC_SCHEME encScheme This SHALL be the encryption scheme that the key uses
to encrypt information see section 8.4

TCPA_SIG_SCHEME sigScheme This SHALL be the signature scheme that the key uses
to perform digital signatures see section 8.5

BYTE[] parms This SHALL be the parameter information dependant
upon the key algorithm.

Descriptions
The contents of the ‘parms’ field will vary depending upon algorithmId:

Algorithm Id PARMS Contents

TCPA_ALG_RSA A structure of type TCPA_RSA_KEY_PARMS

TCPA_ALG_DES No content

TCPA_ALG_3DES No content – Need description of key size (3 full keys etc) and mode EDE etc.

TCPA_ALG_SHA No content

TCPA_ALG_HMAC No content

TCPA_ALG_AES No content – Need description of key size (128, 192, 256)

4.20.1 TCPA_RSA_KEY_PARMS
Start of informative comment:

This structure describes the parameters of an RSA key.

End of informative comment.

TCPA Main Specification Page 50

Version 1.1a 1 December 2001

Definition
typedef struct tdTCPA_RSA_KEY_PARMS {

UINT32 keyLength;
UINT32 numPrimes;
UINT32 exponentSize;
BYTE[] exponent;

} TCPA_RSA_KEY_PARMS;

Parameters

Type Name Description

UINT32 keyLength This specifies the size of the RSA key in bits

UINT32 numPrimes This specifies the number of prime factors used by this RSA key.

UINT32 exponentSize This SHALL be the size of the exponent. If the key is using the
exponent from 10.4.1 then the exponentSize MUST be 0.

BYTE[] exponent The public exponent of this key

TCPA Main Specification Page 51

Version 1.1a 1 December 2001

4.21 TCPA_CHANGEAUTH_VALIDATE
Start of informative comment:
This structure provides an area that will stores the new authorization data and the challenger’s nonce.

End of informative comment.
Definition
typedef struct tdTCPA_CHANGEAUTH_VALIDATE {

TCPA_SECRET newAuthSecret;
TCPA_NONCE n1;

} TCPA_CHANGEAUTH_VALIDATE;

Parameters

Type Name Description

TCPA_SECRET newAuthSecret This SHALL be the new authorization data for the target entity

TCPA_NONCE n1 This SHOULD be a nonce, to enable the caller to verify that the target
TPM is on-line.

TCPA Main Specification Page 52

Version 1.1a 1 December 2001

4.22 TCPA_MIGRATE_SCHEME
Start of informative comment:
The scheme indicates how the StartMigrate command should handle the migration of the encrypted blob.

End of informative comment.
Definition
TCPA_MIGRATE_SCHEME values

Name Value Description

TCPA_MS_MIGRATE 0x0001 A public key that can be used with all TCPA migration commands
other than ‘ReWrap’ mode.

TCPA_MS_REWRAP 0x0002 A public key that can be used for the ReWrap mode of
TPM_CreateMigrationBlob.

TCPA_MS_MAINT 0x0003 A public key that can be used for the Maintenance commands

TCPA Main Specification Page 53

Version 1.1a 1 December 2001

4.23 TCPA_MIGRATIONKEYAUTH
Start of informative comment:
This structure provides the proof that the associated public key has TPM Owner authorization to be a
migration key.

End of informative comment.
Definition
typedef struct tdTCPA_MIGRATIONKEYAUTH{

TCPA_PUBKEY migrationKey;
TCPA_MIGRATE_SCHEME migrationScheme;
TCPA_DIGEST digest;

} TCPA_MIGRATIONKEYAUTH;

Parameters

Type Name Description

TCPA_PUBKEY migrationKey This SHALL be the public key of the migration facility

TCPA_MIGRAT
E_SCHEME

migrationScheme This shall be the type of migration operation.

TCPA_DIGEST digest This SHALL be the digest value of the concatenation of
migration key, migration scheme and tpmProof

TCPA Main Specification Page 54

Version 1.1a 1 December 2001

4.24 TCPA_AUDIT_EVENT structure
Start of informative comment:
This structure reports the contents of the audit log. The entries in the log, if hashed together should equal
the current hash value held by the TPM. Mismatches indicate attacks on the system or failures to properly
audit events.

The 1 version has the minimal information necessary to recreate the history of audited operations.

Future versions may add additional information.

End of informative comment.
IDL Definition
typedef struct tdTCPA_AUDIT_EVENT{

TCPA_COMMAND_CODE ordinal;
TCPA_RESULT returncode;

} TCPA_AUDIT_EVENT;

Parameters

Type Name Description

TCPA_COMMAND_CODE ordinal Ordinal of the command

TCPA_RESULT returncode Return code for the command

TCPA Main Specification Page 55

Version 1.1a 1 December 2001

4.25 PCR Structures
Start of informative comment:
The PCR structures expose the information in PCR register, allow for selection of PCR register or
registers in the SEAL operation and define what information is held in the PCR register.

These structures are in use during the wrapping of keys and sealing of blobs.

End of informative comment.

TCPA Main Specification Page 56

Version 1.1a 1 December 2001

4.25.1 TCPA_EVENT_CERT
Start of informative comment:

Certificate structure to use when adding EV_CODE_CERT events to the log.

End of informative comment.
Definition
typedef struct tdTCPA_EVENT_CERT {

TCPA_DIGEST certificateHash;
TCPA_DIGEST entityDigest;
BOOL digestChecked;
BOOL digestVerified;
UINT32 issuerSize;
[size_is (IssuerSize)] BYTE * issuer;

) TCPA_EVENT_CERT;

Parameters

Type Name Description

TCPA_DIGEST certificateHash Hash of the entire VE certificate

TCPA_DIGEST entityDigest Actual digest value of the entity

BOOL digestChecked TRUE if the entity logging this event checked the
measured value against the digest value in the certificate.

FALSE if no checking was attempted.

BOOL digestVerified Only valid when DigestChecked is TRUE.

TRUE if measured value matches digest value in
certificate, FALSE otherwise.

UINT32 issuerSize Size of the Issuer parameter

BYTE* issuer Actual issuer certificate

TCPA Main Specification Page 57

Version 1.1a 1 December 2001

4.25.2 TCPA_PCR_EVENT
Start of informative comment:

Individual events are stored in the TCPA_PCR_EVENT variably sized data structure.

TCPA defines the following event/supporting information types:

EventType Values

Value Event Name Comments

0 EV_CODE_CERT The TPM_Extend event is in response to loading a firmware or
software component for which a VE certificate was available. *Event
points to the VE certificate that shipped with the platform firmware or
software (or discovered by other means). Size indicates the length of
this structure. ExtendValue is the digest of the firmware, software or
other code loaded. Certificates are much too large to put into the log in
the Pre-OS environment. Validation of Certificates is unlikely in the
Pre-OS environment. The event MUST point to a
TCPA_EVENT_CERT structure.

1 EV_CODE_NOCERT The event was in response to loading a firmware or other software
component, but no VE certificate was found. The size is 0 and *Event
is unused. However, ExtendValue is the digest of the firmware
discovered. Absence of a VE certificate does not indicate lack of trust;
it merely indicates that a VE certificate was not available at this point
in boot. Upper-level software may be able to obtain such certificates.

2 EV_XML_CONFIG The event describes the platform configuration. The supporting
information is a platform or firmware-defined XML data structure that
indicates security-relevant hardware configuration information. The
event logged to TPM_Extend is the SHA-1 digest of the XML data
structure, and the firmware guarantees that the configuration stated in
the data structure is in effect when the firmware relinquishes control to
the next module in boot. Size is the size in bytes of the XML data
structure, and *Event points to the data structure itself. The information
may include size of physical memory, number of processors, chipset
configuration, buses discovered and processor/bus frequencies.
Firmware vendors are free to define the XML reporting structure and
select those parameters that are important for their platforms.

3 EV_NO_ACTION The action was not performed. The corresponding DIGEST structure
MUST be 0x1 (a single binary digit in the LSB of the DIGEST
structure), and this value MUST also be logged to the TPM using the
corresponding TPM_Extend operation. A supporting data structure
may be supplied containing information that describes why the event
did not occur. If such supporting information is supplied, it should be
well-formed XML. However, this supporting information is not required.

4 EV_SEPARATOR A list of actions was complete. This event must be used if more than
one event can be logged to the TPM and upper-level software needs
to be informed that logging was completed.

5 EV_ACTION A logged event. This is a Unicode string with the content defined by
the Platform Specific specifications.

6 EV_PLATFORM_SP
ECIFIC

Implementation specification defined data.

TCPA Main Specification Page 58

Version 1.1a 1 December 2001

7 –
(216-1)

Reserved TCPA-reserved event types

216 –
(232

 -1)
User-definable Undefined and free for general-purpose use

Additional event types may be defined for TCPA usage in specific computing platforms (for example, the
PC).

End of informative comment.

TCPA Main Specification Page 59

Version 1.1a 1 December 2001

4.25.3 TCPA_PCR_SELECTION
Start of informative comment:

This structure provides a standard method of specifying a list of PCR registers.

End of informative comment.

Definition
typedef struct tdTCPA_PCR_SELECTION {

UINT16 sizeOfSelect;
[size_is(sizeOfSelect)] BYTE pcrSelect[];
} TCPA_PCR_SELECTION;

Parameters

Type Name Description

UINT16 sizeOfSelect The size in bytes of the pcrSelect structure

BYTE pcrSelect This SHALL be a bit map that indicates if a PCR is
active or not

Description

When the least-significant-bit of byte [N+1] of pcrSelect is butted against the most-significant-bit of byte
[N] of pcrSelect for (15>=N>=0), the contiguous bit array so formed SHALL represent PCR indices in
monotonically increasing order, starting from PCR index zero represented by bit 0 of byte 0 of pcrSelect.

The state of each bit in pcrSelect indicates whether a PCR register is selected or not. When the bit is 1
then the corresponding PCR is selected, if 0 the PCR is not selected.

The TPM MUST support a minimum sizeOfSelect of 2, larger sizes are allowable. The TPM MAY support
TCPA_PCR_SELECTION structures with a larger size.

TCPA Main Specification Page 60

Version 1.1a 1 December 2001

4.25.4 TCPA_PCR_COMPOSITE
Start of informative comment:

The composite structure provides the index and value of the PCR register to be used when creating the
value that SEALS an entity to the composite.

End of informative comment.

Definition
typedef struct tdTCPA_PCR_COMPOSITE {

TCPA_PCR_SELECTION select;
UINT32 valueSize;
[size_is(valueSize)] TCPA_PCRVALUE pcrValue[];
} TCPA_PCR_COMPOSITE;

Parameters

Type Name Description

TCPA_PCR_SELECTION select This SHALL be the indication of which PCR values are
active

UINT32 valueSize This SHALL be the size of the pcrValue field

TCPA_PCRVALUE pcrValue[] This SHALL be an array of TCPA_PCRVALUE structures.
The values come in the order specified by the select
parameter and are concatenated into a single blob

TCPA Main Specification Page 61

Version 1.1a 1 December 2001

4.25.5 TCPA_PCR_INFO
Start of informative comment:

The TCPA_PCR_INFO structure contains the information related to the wrapping of a key or the sealing
of data, to a set of PCRs.

End of informative comment.
Definition
typedef struct tdTCPA_PCR_INFO{

TCPA_PCR_SELECTION pcrSelection;
TCPA_COMPOSITE_HASH digestAtRelease;
TCPA_COMPOSITE_HASH digestAtCreation;
} TCPA_PCR_INFO;

Parameters

Type Name Description
TCPA_PCR_SELECTION pcrSelection This SHALL be the selection of PCRs to which the

data or key is bound.

TCPA_COMPOSITE_HASH digestAtRelease This SHALL be the digest of the PCR indices and
PCR values to verify when revealing Sealed Data
or using a key that was wrapped to PCRs.

TCPA_COMPOSITE_HASH digestAtCreation This SHALL be the composite digest value of the
PCR values, at the time when the sealing is
performed.

TCPA Main Specification Page 62

Version 1.1a 1 December 2001

4.26 Storage Structures

4.26.1 TCPA_STORED_DATA
Start of informative comment:

The definition of this structure is necessary to ensure the enforcement of security properties.

This structure is in use by the TPM_Seal and TPM_Unseal commands to identify the PCR index and
values that must be present to properly unseal the data.

End of informative comment.
Definition
typedef struct tdTCPA_STORED_DATA {

TCPA_VERSION ver;
UINT32 sealInfoSize;
[size_is(sealInfoSize)] BYTE* sealInfo;
UINT32 encDataSize;
[size_is(encDataSize)] BYTE* encData;
} TCPA_STORED_DATA;

Parameters

Type Name Description
TCPA_VERSION ver Version number defined in section 4.5.

UINT32 sealInfoSize Size of the sealInfo parameter

BYTE* sealInfo This SHALL be a structure of type
TCPA_PCR_INFO or a 0 length array if the
data is not bound to PCRs.

UINT32 encDataSize This SHALL be the size of the encData
parameter

BYTE* encData This shall be an encrypted
TCPA_SEALED_DATA structure containing
the confidential part of the data.

Descriptions

This structure is created during the TPM_Seal process. The confidential data is encrypted using a non-
migratable key. When the TPM_Unseal decrypts this structure the TPM_Unseal uses the public
information in the structure to validate the current configuration and release the decrypted data.

TCPA Main Specification Page 63

Version 1.1a 1 December 2001

4.26.2 TCPA_SEALED_DATA
Start of informative comment:

This structure contains confidential information related to sealed data, including the data itself.

End of informative comment.
Definition
typedef struct tdTCPA_SEALED_DATA {

TCPA_PAYLOAD_TYPE payload;
TCPA_SECRET authData;
TCPA_NONCE tpmProof;
TCPA_DIGEST storedDigest;
UINT32 dataSize;
[size_is(dataSize)] BYTE* data;
} TCPA_SEALED_DATA;

Parameters

Type Name Description

TCPA_PAYLOAD_TYPE payload This SHALL indicate the payload type of
TCPA_PT_SEAL

TCPA_SECRET authData This SHALL be the authorization data for this value

TCPA_NONCE tpmProof This SHALL be a copy of
TPM_PERSISTENT_FLAGS -> tpmProof

TCPA_DIGEST storedDigest This SHALL be a digest of the
TCPA_STORED_DATA structure, excluding the fields
TCPA_STORED_DATA -> encDataSize and
TCPA_STORED_DATA -> encData.

UINT32 dataSize This SHALL be the size of the data parameter

BYTE* data This SHALL be the data to be sealed

Description

To tie the TCPA_STORED_DATA structure to the TCPA_SEALED_DATA structure this structure
contains a digest of the containing TCPA_STORED_DATA structure.

The digest calculation does not include the encDataSize and encData parameters.

TCPA Main Specification Page 64

Version 1.1a 1 December 2001

4.26.3 TCPA_SYMMETRIC_KEY
Start of informative comment:

This structure describes a symmetric key, used during the process 0 “Collating a Request for a Trusted
Platform Module Identity”.

End of informative comment.
Definition
typedef struct tdTCPA_SYMMETRIC_KEY {

TCPA_ALGORITHM_ID algId;
TCPA_ENC_SCHEME encScheme;
UINT16 size;
[size_is(size)] BYTE* data;

} TCPA_SYMMETRIC_KEY;

Parameters

Type Name Description

TCPA_ALGORITHM_ID algId This SHALL be the algorithm identifier of the symmetric
key.

TCPA_ENC_SCHEME encScheme This SHALL fully identify the manner in which the key
will be used for encryption operations.

UINT16 size This SHALL be the size of the data parameter in bytes

BYTE* data This SHALL be the symmetric key data

TCPA Main Specification Page 65

Version 1.1a 1 December 2001

4.26.4 TCPA_BOUND_DATA
Start of informative comment:

This structure is defined because it is used by a TPM_UnBind command in a consistency check.

The intent of TCPA is to promote “best practice” heuristics for the use of keys: a signing key shouldn’t be
used for storage, and so on. These heuristics are used because of the potential threats that arise when
the same key is used in different ways. The heuristics minimize the number of ways in which a given key
can be used.

One such heuristic is that a key of type TPM_KEY_BIND, and no other type of key, should always be
used to create the blob that is unwrapped by TPM_UnBind. Binding is not a TPM function, so the only
choice is to perform a check for the correct payload type when a blob is unwrapped by a key of type
TPM_KEY_BIND. This requires the blob to have internal structure.

Even though payloadData has variable size, TCPA_BOUND_DATA deliberately does not include the size
of payloadData. This is to maximise the size of payloadData that can be encrypted when
TCPA_BOUND_DATA is encrypted in a single block. When using TPM-UnBind to obtain payloadData,
the size of payloadData is deduced as a natural result of the (RSA) decryption process.

End of informative comment.
Definition
typedef struct tdTCPA_BOUND_DATA {

TCPA_VERSION ver;
TCPA_PAYLOAD_TYPE payload;
BYTE[] payloadData;
} TCPA_BOUND_DATA;

Parameters

Type Name Description
TCPA_VERSION ver Version number defined in section 4.5.

TCPA_PAYLOAD_TYPE payload This SHALL be the value TCPA_PT_BIND

BYTE[] payloadData The bound data

Descriptions

This structure MUST be used for creating data when (wrapping with a key of type TPM_KEY_BIND) or
(wrapping using the encryption algorithm TCPA_ES_RSAESOAEP_SHA1_M). If it is not, the
TPM_UnBind command will fail.

TCPA Main Specification Page 66

Version 1.1a 1 December 2001

4.27 TCPA_KEY complex
Start of informative comment:
The TPA_KEY complex is where all of the information regarding keys is kept. These structures combine
to fully define and protect the information regarding an asymmetric key.

This version of the specification only fully defines RSA keys, however the design is such that in the future
when other asymmetric algorithms are available the general structure will not change.

One overriding design goal is for a 2048 bit RSA key to be able to properly protect another 2048 bit RSA
key. This stems from the fact that the SRK is a 2048 bit key and all identities are 2048 bit keys. A goal is
to have these keys only require one decryption when loading an identity into the TPM. The structures as
defined meet this goal.

Every TCPA_KEY is allowed only one encryption scheme or one signature scheme (or one of each in the
case of legacy keys) throughout its lifetime. Note however that more than one scheme could be used
with externally generated keys, by introducing the same key in multiple blobs.

End of informative comment.:

TCPA Main Specification Page 67

Version 1.1a 1 December 2001

4.27.1 TCPA_KEY
Start of informative comment:

The TCPA_KEY structure provides a mechanism to transport the entire asymmetric key pair. The private
portion of the key is always encrypted.

The reason for using a size and pointer for the PCR info structure is save space when the key is not
bound to a PCR. The only time the information for the PCR is kept with the key is when the key needs
PCR info.

End of informative comment.:
Definition
typedef struct tdTCPA_KEY{

TCPA_VERSION ver;
TCPA_KEY_USAGE keyUsage;
TCPA_KEY_FLAGS keyFlags;
TCPA_AUTH_DATA_USAGE authDataUsage;
TCPA_KEY_PARMS algorithmParms;
UINT32 PCRInfoSize;
BYTE* PCRInfo;
TCPA_STORE_PUBKEY pubKey;
UINT32 encSize;
[size_is(encData)] BYTE* encData;
} TCPA_KEY;

Parameters

Type Name Description
TCPA_VERSION ver Version number defined in section 4.5.

TCPA_KEY_USAGE keyUsage This SHALL be the TCPA key usage that
determines the operations permitted with this key

TCPA_KEY_FLAGS keyFlags This SHALL be the indication of migration,
redirection etc.

TCPA_AUTH_DATA_USAGE authDataUsage This SHALL Indicate the conditions where it is
required that authorization be presented.

TCPA_KEY_PARMS algorithmParms This SHALL be the information regarding the
algorithm for this key

UINT32 PCRInfoSize This SHALL be the length of the pcrInfo parameter.
If the key is not bound to a PCR this value SHOULD
be 0.

BYTE* PCRInfo This SHALL be a structure of type
TCPA_PCR_INFO, or an empty array if the key is
not bound to PCRs.

TCPA_STORE_PUBKEY pubKey This SHALL be the public portion of the key

UINT32 encSize This SHALL be the size of the encData parameter.

BYTE* encData This SHALL be an encrypted
TCPA_STORE_ASYMKEY structure
TCPA_MIGRATE_ASYMKEY structure

TCPA Main Specification Page 68

Version 1.1a 1 December 2001

4.27.2 TCPA_STORE_PUBKEY
Start of informative comment:

This structure can be used in conjunction with a corresponding TCPA_KEY_PARMS to construct a public
key which can be unambiguously used.

End of informative comment.
typedef struct tdTCPA_STORE_PUBKEY {

UINT32 keyLength;
BYTE[] key;

} TCPA_STORE_PUBKEY;

Parameters

Type Name Description
UINT32 keyLength This SHALL be the length of the key field.

BYTE[] key This SHALL be a structure interpreted according to the algorithm Id in
the corresponding TCPA_KEY_PARMS structure.

Descriptions
The contents of the ‘key’ field will vary depending upon the corresponding key algorithm:

Algorithm Id ‘Key’ Contents

TCPA_ALG_RSA The RSA public modulus

TCPA Main Specification Page 69

Version 1.1a 1 December 2001

4.27.3 TCPA_PUBKEY
Start of informative comment:

The TCPA_PUBKEY structure contains the public portion of an asymmetric key pair. It contains all the
information necessary for it’s unambiguous usage. It is possible to construct this structure from a
TCPA_KEY, using the algorithmParms and pubKey fields.

End of informative comment.
Definition
typedef struct tdTCPA_PUBKEY{

TCPA_KEY_PARMS algorithmParms;
TCPA_STORE_PUBKEY pubKey;
} TCPA_PUBKEY;

Parameters

Type Name Description
TCPA_KEY_PARMS algorithmParms This SHALL be the information regarding this key

TCPA_STORE_PUBKEY pubKey This SHALL be the public key information

Descriptions
The pubKey member of this structure shall contain the public key for a specific algorithm.

TCPA Main Specification Page 70

Version 1.1a 1 December 2001

4.27.4 TCPA_STORE_ASYMKEY
Start of informative comment:

The TCPA_STORE_ASYMKEY structure provides the area to identify the confidential information related
to a key. This will include the private key factors for an asymmetric key.

The structure is designed so that encryption of a TCPA_STORE_ASYMKEY structure containing a 2048
bit RSA key can be done in one operation if the encrypting key is 2048 bits.

Using typical RSA notation the structure would include P, and when loading the key include the
unencrypted P*Q which would be used to recover the Q value.

To accommodate the future use of multiple prime RSA keys the specification of additional prime factors is
an optional capability.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see 8.4.1

Changes in this structure MUST be reflected in the TCPA_MIGRATE_ASYMKEY structure (section
4.27.6).

End of informative comment.
Definition
typedef struct tdTCPA_STORE_ASYMKEY { // pos len total

TCPA_PAYLOAD_TYPE payload; // 0 1 1
TCPA_SECRET usageAuth; // 1 20 21
TCPA_SECRET migrationAuth; // 21 20 41
TCPA_DIGEST pubDataDigest; // 41 20 61
TCPA_STORE_PRIVKEY privKey; // 61 132-151 193-214

} TCPA_STORE_ASYMKEY;

Parameters

Type Name Description
TCPA_PAYLOAD_TYPE payload This SHALL set to TCPA_PT_ASYM to indicate an

asymmetric key.

TCPA_SECRET usageAuth This SHALL be the authorization data necessary to authorize
the use of this value

TCPA_SECRET migrationAuth This SHALL be the migration authorization data for a
migratable key, or the TPM secret value tpmProof for a non-
migratable key created by the TPM.

If the TPM sets this parameter to the value tpmProof, then the
TCPA_KEY.keyFlags.migratable of the corresponding
TCPA_KEY structure MUST be set to 0.

If this parameter is set to the migration authorization data for
the key in parameter PrivKey, then the
TCPA_KEY.keyFlags.migratable of the corresponding
TCPA_KEY structure SHOULD be set to 1.

TCPA_DIGEST pubDataDigest This SHALL be the digest of the corresponding TCPA_KEY
structure, excluding the fields TCPA_KEY.encSize and
TCPA_KEY.encData.

When TCPA_KEY -> pcrInfoSize is 0 then the digest
calculation has no input from the pcrInfo field. The pcrInfoSize

TCPA Main Specification Page 71

Version 1.1a 1 December 2001

field MUST always be part of the digest calcuation.

TCPA_STORE_PRIVKEY privKey This SHALL be the private key data. The privKey can be a
variable length which allows for differences in the key format.
The maximum size of the area would be 151 bytes.

TCPA Main Specification Page 72

Version 1.1a 1 December 2001

4.27.5 TCPA_STORE_PRIVKEY
Start of informative comment:

This structure can be used in conjunction with a corresponding TCPA_PUBKEY to construct a private key
which can be unambiguously used.

End of informative comment.
typedef struct tdTCPA_STORE_PRIVKEY {

UINT32 keyLength;
[size_is(keyLength)] BYTE* key;

} TCPA_STORE_PRIVKEY;

Parameters

Type Name Description
UINT32 keyLength This SHALL be the length of the key field.

BYTE* key This SHALL be a structure interpreted according to
the algorithm Id in the corresponding TCPA_KEY
structure.

Descriptions
All migratable keys MUST be RSA keys with two (2) prime factors.

For non-migratable keys, the size, format and contents of privKey.key MAY be vendor specific and MAY
not be the same as that used for migratable keys. The level of cryptographic protection MUST be at least
as strong as a migratable key.

Algorithm Id key Contents

TCPA_ALG_RSA When the numPrimes defined in the corresponding TCPA_RSA_KEY_PARMS
field is 2, this shall be one of the prime factors of the key. Upon loading of the
key the TPM calculates the other prime factor by dividing the modulus, stated
in section 10.4.1: TCPA_RSA_PUBKEY, by this value.

The TPM MAY support RSA keys with more than two prime factors. Definition
of the storage structure for these keys is left to the TPM Manufacturer.

TCPA Main Specification Page 73

Version 1.1a 1 December 2001

4.27.6 TCPA_MIGRATE_ASYMKEY
Start of informative comment:

The TCPA_MIGRATE_ASYMKEY structure provides the area to identify the private key factors of a
asymmetric key while the key is migrating between TPM’s.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see 7.2.11.

End of informative comment.
Definition
typedef struct tdTCPA_MIGRATE_ASYMKEY { // pos len total

TCPA_PAYLOAD_TYPE payload; // 0 1 1
TCPA_SECRET usageAuth; // 1 20 21
TCPA_DIGEST pubDataDigest; // 21 20 41
UINT32 partPrivKeyLen; // 41 4 45
TCPA_STORE_PRIVKEY partPrivKey; // 45 112-127 157-172

} TCPA_MIGRATE_ASYMKEY;

Parameters

Type Name Description
TCPA_PAYLOAD_TYPE payload This SHALL set to TCPA_PT_MIGRATE to indicate

an migrating asymmetric key or TCPA_PT_MAINT to
indicate a maintenance key.

TCPA_SECRET usageAuth This SHALL be a copy of the usageAuth from the
TCPA_STORE_ASYMKEY structure.

TCPA_DIGEST pubDataDigest This SHALL be a copy of the pubDataDigest from the
TCPA_STORE_ASYMKEY structure.

UINT32 partPrivKeyLen This SHALL be the size of the partPrivKey field

TCPA_STORE_PRIVKEY partPrivKey This SHALL be the k2 area as defined in section
7.2.11

TCPA Main Specification Page 74

Version 1.1a 1 December 2001

4.28 TCPA_CERTIFY_INFO Structure
Start of informative comment:
When the TPM certifies a key, it must provide a signature with a TPM identity key on information that
describes that key. This structure provides the mechanism to do so.

End of informative comment.
IDL Definition
typedef struct tdTCPA_CERTIFY_INFO{

TCPA_VERSION version;
TCPA_KEY_USAGE keyUsage;
TCPA_KEY_FLAGS keyFlags;
TCPA_AUTH_DATA_USAGE authDataUsage;
TCPA_KEY_PARMS algorithmParms;
TCPA_DIGEST pubkeyDigest;
TCPA_NONCE data;
BOOL parentPCRStatus;
UINT32 PCRInfoSize;
[size_is(pcrInfoSize)] BYTE* PCRInfo;

Parameters

Type Name Description

TCPA_VERSION version TCPA version structure; section 4.5 .

TCPA_KEY_USAGE keyUsage This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified

TCPA_KEY_FLAGS keyFlags This SHALL be set to the same value as the
corresponding parameter in the TCPA_KEY structure
that describes the public key that is being certified

TCPA_AUTH_DATA
_USAGE

authDataUsage This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified

TCPA_KEY_PARMS algorithmParms This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified

TCPA_DIGEST pubKeyDigest This SHALL be a digest of the value TCPA_KEY ->
pubKey -> key in a TCPA_KEY representation of the
key to be certified

TCPA_NONCE data This SHALL be externally provided data.

BOOL parentPCRStatus This SHALL indicate if any parent key was wrapped to a
PCR

UINT32 PCRInfoSize This SHALL be the size of the pcrInfo parameter. A
value of zero indicates that the key is not wrapped to a
PCR

BYTE* PCRInfo This SHALL be the TCPA_PCR_INFO structure.

TCPA Main Specification Page 75

Version 1.1a 1 December 2001

4.29 TCPA_QUOTE_INFO Structure
Start of informative comment:
This structure provides the mechanism for the TPM to quote the current values of a list of PCRs.

End of informative comment.

IDL Definition
typedef struct tdTCPA_QUOTE_INFO{

TCPA_VERSION version;
BYTE fixed[4];
TCPA_COMPOSITE_HASH digestValue;
TCPA_NONCE externalData,

} TCPA_QUOTE_INFO;

Parameters

Type Name Description

TCPA_VERSION version TCPA version structure; section 4.5

BYTE fixed This SHALL always be the string ‘QUOT’

TCPA_COMPOSITE_HASH digestValue This SHALL be the result of the composite hash
algorithm using the current values of the requested
PCR indices.

TCPA_NONCE externalData 160 bits of externally supplied data

TCPA Main Specification Page 76

Version 1.1a 1 December 2001

4.30 Identity Structures

4.30.1 TCPA_IDENTITY_CONTENTS
Start of informative comment:

TPM_MakeIdentity uses this structure and the signature of this structure goes to a privacy CA during the
certification process.

End of informative comment.
Definition
typedef struct tdTCPA_IDENTITY_CONTENTS {

TCPA_VERSION ver
UINT32 ordinal,
TCPA_CHOSENID_HASH labelPrivCADigest,
TCPA_PUBKEY identityPubKey;

} TCPA_IDENTITY_CONTENTS;

Parameters

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in
section 4.5.

UINT32 ordinal This SHALL be the ordinal of the
TPM_MakeIdentity command.

TCPA_CHOSENID_HASH labelPrivCADigest This SHALL be the result of hashing the
chosen identityLabel and privacyCA for the
new TPM identity (see 10.4.6 for details)

TCPA_PUBKEY identityPubKey This SHALL be the public key structure of the
identity key

TCPA Main Specification Page 77

Version 1.1a 1 December 2001

4.30.2 TCPA_IDENTITY_REQ
Start of informative comment:

This structure is sent by the TSS to the Privacy CA to create the identity credential.

End of informative comment.

Parameters

Type Name Description

UINT32 asymSize This SHALL be the size of the asymmetric
encrypted area created by
TSS_CollateIdentityRequest

UINT32 symSize This SHALL be the size of the symmetric
encrypted area created by
TSS_CollateIdentityRequest

TCPA_KEY_PARMS asymAlgorithm This SHALL be the parameters for the asymmetric
algorithm used to create the asymBlob

TCPA_KEY_PARMS symAlgorithm This SHALL be the parameters for the symmetric
algorithm used to create the symBlob

BYTE* asymBlob This SHALL be the asymmetric encrypted area
from TSS_CollateIdentityRequest

BYTE* symBlob This SHALL be the symmetric encrypted area
from TSS_CollateIdentityRequest

TCPA Main Specification Page 78

Version 1.1a 1 December 2001

4.30.3 TCPA_IDENTITY_PROOF
Start of informative comment:

This structure is used during the process 0 “Collating a Request for a Trusted Platform Module Identity”

End of informative comment.

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

UINT32 labelSize This SHALL be the size of the label area

UINT32 identityBindingSize This SHALL be the size of the identitybinding area

UINT32 endorsementSize This SHALL be the size of the endorsement
credential

UINT32 platformSize This SHALL be the size of the platform credential

UINT32 conformanceSize This SHALL be the size of the conformance
credential

TCPA_PUBKEY identityKey This SHALL be the public key of the new identity

BYTE* labelArea This SHALL be the text label for the new identity

BYTE* identityBinding This SHALL be the signature value of
TCPA_IDENTITY_CONTENTS structure from the
TPM_MakeIdentity command

BYTE* endorsementCredential This SHALL be the TPM endorsement credential

BYTE* platformCredential This SHALL be the TPM platform credential

BYTE* conformanceCredential This SHALL be the TPM conformance credential

TCPA Main Specification Page 79

Version 1.1a 1 December 2001

4.30.4 TCPA_ASYM_CA_CONTENTS
Start of informative comment:

This structure contains the symmetric key to encrypt the identity credential.

End of informative comment.
Definition
typedef struct tdTCPA_ASYM_CA_CONTENTS{

TCPA_SYMMETRIC_KEY sessionKey;
TCPA_DIGEST idDigest;

} TCPA_ASYM_CA_CONTENTS;

Parameters

Type Name Description

TCPA_SYMMETRIC_KEY sessionKey This SHALL be the session key used by the CA to encrypt
the TCPA_IDENTITY_CREDENTIAL

TCPA_DIGEST idDigest This SHALL be the digest of the TPM identity public key
that is being certified by the CA

TCPA Main Specification Page 80

Version 1.1a 1 December 2001

4.30.5 TCPA_SYM_CA_ATTESTATION
Start of informative comment:

This structure returned by the Privacy CA with the encrypted identity credential.

End of informative comment.

Type Name Description

UINT32 credSize This SHALL be the size of the credential parameter

TCPA_KEY_PARMS algorithm This SHALL be the indicator and parameters for the
symmetric algorithm

BYTE* credential This is the result of encrypting
TPM_IDENTITY_CREDENTIAL using the session_key and
the algorithm indicated “algorithm”

TCPA Main Specification Page 81

Version 1.1a 1 December 2001

4.31 TCPA_CAPABILITY_AREA
Start of informative comment:
To identify a capability to be queried.

End of informative comment.

TCPA_CAPABILITY_AREA Values

Value Capability Name Comments

0x00000001 TCPA_CAP_ORD Queries whether a command is supported.

0x00000002 TCPA_CAP_ALG Queries whether an algorithm is supported.

0x00000003 TCPA_CAP_PID Queries whether a protocol is supported.

0x00000004 TCPA_CAP_FLAG Queries whether a flag is on or off.

0x00000005 TCPA_CAP_PROPERTY Determines a physical property of the TPM.

0x00000006 TCPA_CAP_VERSION Queries the current TPM version.

0x00000007 TCPA_CAP_KEY_HANDLE Obtains information about all key handles

0x00000008 TPM_CAP_CHECK_LOADED Obtains information about the ability to load a key

0x00000009

0x0000000A

0x0000000B

TCPA Main Specification Page 82

Version 1.1a 1 December 2001

4.32 Credentials
Start of informative comment:
The credentials in use for a TCPA system interlock. The following diagram shows the relationship
between the credentials. Credentials, being abstract, are instantiated as tangible, unambiguous entities in
Section 9.5 Instantiation of Credentials as Certificates.

End of informative comment.

TCPA Main Specification Page 83

Version 1.1a 1 December 2001

4.32.1 Evidence of Subsystem Endorsement
Start of informative comment:

The purpose of TPM_ENDORSEMENT_CREDENTIAL is to provide evidence that a TPM correctly
implements the protected capabilities and shielded locations of the TCPA specification.

TPM_ENDORSEMENT_CREDENTIAL is an attestation that a genuine TCPA Trusted Platform Module
created the PUBEK that is referenced in TPM_ENDORSEMENT_CREDENTIAL.
TPM_ENDORSEMENT_CREDENTIAL contains information that a Privacy CA may use in judging
whether the Privacy CA will attest to an identity of that TCPA Trusted Platform Module.
TPM_ENDORSEMENT_CREDENTIAL contains information that the Privacy CA must use in attesting to
an identity of that TCPA Trusted Platform Module.

TPM_ENDORSEMENT_CREDENTIAL is tagged with TCPA_VERSION so as to indicate the version of
the capability that created the PUBEK at the time the key was generated. This may be useful in the event
that capabilities are field-upgraded.

• PUBEK will be required by the Privacy CA when the Privacy CA attests to a TCPA Trusted Platform
Module identity (TPM identity).

• “TCPA Trusted Platform Module Endorsement” identifies a data structure as
TPM_ENDORSEMENT_CREDENTIAL and enables the TPME to sign the data with a key that is not
exclusively reserved for signing TPM_ENDORSEMENT_CREDENTIAL.

• tpme_reference is the means of referencing the TPME, may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity, and is required by the Privacy CA
when attesting to a TCPA TPM identity.

• tpm_model is the means of referencing the type of implementation of protected capabilities and
shielded locations. It may be required by the Privacy CA when judging whether the Privacy CA will
attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a TCPA TPM
identity.

• tpm_distributed_validation is a convenient immediate reference to the security properties of the
implementation of protected capabilities and shielded locations. It may be required by the Privacy CA
when judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the
Privacy CA when attesting to a TCPA TPM identity.

• Access to the TPM_ENDORSEMENT_CREDENTIAL must be restricted to entities that have a “need
to know.” This is for reasons of privacy.

End of informative comment.
Description
struct TPM_ENDORSEMENT_CREDENTIAL = {

BYTE label = “TCPA Trusted Platform Module Endorsement”
TCPA_PUBKEY public_endorsement_key
REFERENCE tpm_model
REFERENCE tpm_distributed_validation
REFERENCE tpme_reference
TCPA_VERSION TCPA_VERSION
SIGNATURE signature_value}

This is an abstract definition, section 9.5.1 contains the concrete
representation.

Parameters

Type Name Description

TCPA Main Specification Page 84

Version 1.1a 1 December 2001

BYTE label This SHALL be the ASCII characters
“TCPA Trusted Platform Module
Endorsement”

TCPA_PUBKEY public_endorsement_key This SHALL be the PUBEK returned by a
TPM_CreateEndorsementKeyPair
command.

REFERENCE tpm_model This SHALL be a reference to the type of
implementation of protected capabilities
and shielded locations that created the
PUBEK, plus a reference to the identity of
the manufacturer of that implementation.

REFERENCE tpm_distributed_validation This SHALL be a reference to fields that
indicate the security qualities of the
implementation of protected capabilities
and shielded locations that created the
PUBEK.

REFERENCE tpme_reference This SHALL be an unambiguous
indication of the identity of the (TPM)
entity that attests that the implementation
of protected capabilities and shielded
locations conforms to the TCPA
specification.

TCPA_VERSION TCPA_VERSION This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all
previous fields in
TPM_ENDORSEMENT_CREDENTIAL,
using the private key of the tpme-
reference.

When an entity presents evidence to a Privacy CA that an implementation of protected capabilities and
shielded locations conforms to the TCPA specification, that evidence SHALL include the data in the data
structure TPM_ENDORSEMENT_CREDENTIAL.

A (TPME) entity SHALL NOT create the data structure TPM_ENDORSEMENT_CREDENTIAL unless the
entity is satisfied that the PUBEK referenced in TPM_ENDORSEMENT_CREDENTIAL was returned in
response to a TPM_CreateEndorsementKeyPair command by an implementation of protected capabilities
and shielded locations that meets the TCPA specification.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

TCPA Main Specification Page 85

Version 1.1a 1 December 2001

4.32.2 Evidence of Platform Endorsement
Start of informative comment:

The purpose of platform_credential is to provide evidence that a platform correctly incorporates an
implementation of the protected capabilities and shielded locations of a TCPA Subsystem.

Platform_credential is an attestation that a platform contains a genuine TCPA Subsystem.
Platform_credential contains information that a Privacy CA may use in judging whether the Privacy CA
will attest to an identity of that TCPA Subsystem. Platform_credential contains information that the
Privacy CA must use in attesting to an identity of that TCPA Trusted Platform Subsystem.

Platform_credential is tagged with TCPA_VERSION so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

• TPM-reference is the means of referencing the specific implementation of protected capabilities and
shielded locations that is incorporated into the platform. It will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity

• The conformance-credential contains a set of conformance UIDs that unambiguously indicate the
conformance to the TCPA specification of the TPM that is incorporated into the platform. These UIDs
are the “tpm-protection-profile” and “tpm-security-target”. The conformance credential also contains a
set of conformance UIDs that unambiguously indicate the conformance to the TCPA specification of
the means by which the platform incorporates an implementation of the TPM, the implementation of
the root-of-trust-for-measurement, and the means by which the platform incorporates an
implementation of the root-of-trust-for-measurement. These UIDs are the “foundation-protection-
profile” and “foundation-security-target”. All these UIDs will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity.

• “TCPA Trusted Platform Endorsement” identifies a data structure as platform_credential and enables
the Platform Entity (PE) to sign the data with a key that is not exclusively reserved for signing
platform_credential.

• PE_reference is the means of referencing the PE. It may be required by the Privacy CA when judging
whether the Privacy CA will attest to a TCPA TPM identity.

• platform_model is the means of referencing the type of platform. The reference includes the
implementation of TCPA foundations in the platform. The foundations include the root-of-trust-for
measurement that is incorporated into the platform, the method of incorporation of the RTM, and the
method of incorporation of the TPM. It may be required by the Privacy CA when judging whether the
Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a
TCPA TPM identity.

• platform_distributed_validation is a convenient immediate reference to the security properties of the
platform. The reference includes the implementation of TCPA foundations in the platform. The
foundations include the RTM that is incorporated into the platform, the method of incorporation of the
RTM, and the method of incorporation of the TPM. It may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA
when attesting to a TCPA TPM identity.

Access to the platform_credential must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.
Description
When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure platform_credential.

TCPA Main Specification Page 86

Version 1.1a 1 December 2001

An entity (PE) SHALL NOT create the data structure platform_credential unless the entity is satisfied that
the platform conforms to the conformance credential referenced inside platform_credential and contains
the TPM referenced inside platform_credential.

Definition
struct PLATFORM_CREDENTIAL ={

ASCII_STRING “TCPA Trusted Platform Endorsement”
REFERENCE tpm-credential-reference
REFERENCE conformance-credential-reference
REFERENCE platform_TBB
REFERENCE platform_distributed_validation
REFERENCE pe-reference
TCPA_VERSION TCPA_VERSION
SIGNATURE signature_value}

This is an abstract definition, section 9.5.2 contains the concrete
representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Platform
Endorsement”

This SHALL be the ASCII string “TCPA
Trusted Platform Endorsement”

REFERENCE tpm-credential-reference This SHALL be an unambiguous indication
of the endorsement credential of the TPM
incorporated into the platform.

REFERENCE conformance-credential-
reference

This SHALL be an unambiguous indication
of the conformance UIDs that attest that the
design of the platform conforms to the
TCPA specification.

REFERENCE platform_TBB This SHALL be a reference to the type of
the platform, including the TCPA
foundations in the platform, plus a reference
to the identity of the manufacturer of that
platform.

REFERENCE platform_distributed_valid
ation

This SHALL be fields that indicate the
general security qualities of the platform.

REFERENCE pe-reference This SHALL be an unambiguous indication
of the identity of the (platform) entity that
attests to the design and construction of the
platform.

TCPA_VERSION TCPA_VERSION This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all
previous fields in platform_credential, using
the private key of the pe-reference.

If the data structure platform_credential is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

TCPA Main Specification Page 87

Version 1.1a 1 December 2001

4.32.3 Evidence of Platform Conformance
Start of informative comment:

The purpose of conformance_credential is to provide evidence that the design of the Subsystem in a
platform correctly conforms to the TCPA specification, and that the design of the method of incorporation
of the Subsystem in the platform correctly conforms to the TCPA specification.

Conformance_credential is an attestation that the overall design of a platform satisfies the TCPA
specification. Conformance_credential contains information that a Privacy CA may use in judging whether
the Privacy CA will attest to an identity of that TCPA Subsystem. Conformance_credential contains
information that the Privacy CA must use in attesting to an identity of that TCPA Trusted Platform
Subsystem.

Conformance_credential is tagged with TCPA_VERSION so as to indicate the version of the capability
that created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

Conformance_credential contains identifiers (UIDs) that indicate the protection profile and the security
target of both the TPM and the RTM, and the methods by which they are incorporated into the platform.

End of informative comment.
Description
When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure conformance_credential.

A (conformance) entity SHALL NOT create the data structure conformance_credential unless the entity is
satisfied that the design of both the Subsystem and its incorporation into the platform are accurately and
unambiguously represented by the information in conformance_credential.
typedef struct CONFORMANCE_CREDENTIAL ={

ASCII_STRING “TCPA Conformance Credential”
CONFORM_UID tpm_pp
CONFORM_UID tpm_st
CONFORM_UID foundation_pp
CONFORM_UID foundation_st
REFERENCE ce_reference
TCPA_VERSION TCPA_VERSION
SIGNATURE signature

}

This is an abstract definition; section 9.5.3 contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Conformance
Credential”

This SHALL be the ASCII string “TCPA
Conformance Credential”

CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM

CONFORM_UID tpm_st This SHALL be the UID that unambiguously
identifies the security target of the TPM

CONFORM_UID foundation_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID foundation_st This SHALL be the UID that unambiguously
identifies the security target of the TCPA

TCPA Main Specification Page 88

Version 1.1a 1 December 2001

identifies the security target of the TCPA
foundations in the platform.

REFERENCE ce_reference This SHALL be an unambiguous indication of
the identity of the (Conformance) entity that
attests to the overall design of the platform.

TCPA_VERSION TCPA_VERSION This SHALL be the version specified in section
4.5.

SIGNATURE signature_value This SHALL be the signature over all previous
fields in CONFORMANCE_CREDENTIAL,
using the private key of the ce_reference.

TCPA Main Specification Page 89

Version 1.1a 1 December 2001

4.32.4 TCPA Validation Data
Start of informative comment:

The purpose of TCPA Validation Data is to state the values of integrity metrics that should be obtained
when the component described by the validation data is working properly.

TCPA Validation Data identifies a data structure as validation_data and enables the PE to sign the data
with a key that is not exclusively reserved for signing validation_data.

End of informative comment.
All components that influence the software environment in a platform SHOULD have corresponding
validation data.

The representation of a component SHALL reflect the way that the component influences the software
environment in a platform. All representations SHALL include a description of the manufacturer, the
common name of the component, the version of the component, and a field that describes the security
qualities of the component.

The representation of a component SHALL NOT in any way provide information that exposes the identity
of a specific component.

The validation data of a component SHALL be validation_data

IDL Description
typedef struct VALIDATION_DATA ={

ASCII_STRING “TCPA Validation Data”
ASCII_STRING component_manufacturer,
ASCII_STRING component_name,
ASCII_STRING component_version,
DIGEST instruction_digest,
REFERENCE component_distributed_validation,
REFERENCE ve_reference,
TCPA_VERSION TCPA_VERSION,
SIGNATURE validation_data_signature_value}

This is an abstract definition; section 9.5.4 contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Validation Data” This SHALL be the ASCII string “TCPA
Validation Data.”

ASCII_STRING component_manufacturer This SHALL be an ASCII string stating the
name of the manufacturer of the
component.

ASCII_STRING component_name This SHALL be an ASCII string stating the
common name of the component.

ASCII_STRING component_version This SHALL be an ASCII string stating the
version of the component.

DIGEST instruction_digest This SHALL be a digest of any
instructions in the component that are
intended to execute on the main
computing engine of the platform.

REFERENCE component_distributed_
validation

This SHALL be a convenient immediate
reference to the security properties of the

TCPA Main Specification Page 90

Version 1.1a 1 December 2001

reference to the security properties of the
component.

REFERENCE ve_reference This SHALL be an unambiguous
indication of the identity of the (validation)
entity that attests to the validation data.

TCPA_VERSION TCPA_VERSION This SHALL be the version specified in
section 4.5.

SIGNATURE validation_data_signat
ure_value

This SHALL be the result of signing all
fields (except this field) in
VALIDATION_DATA using the signature
(private) key of VE_reference.

4.32.5 Evidence of Trusted Platform Module Identity
Start of informative comment:

The data in TPM_IDENTITY_CREDENTIAL is presented whenever an entity requires proof that an
anonymous identity belongs to a genuine TCPA Subsystem.

TPM_IDENTITY_CREDENTIAL may be accompanied by other data, depending upon circumstances.
When presented in response to an integrity challenge, it may be accompanied by conventional certificates
and validation data, for example.

TPM_IDENTITY_CREDENTIAL is tagged with TCPA_VERSION so as to indicate the version of the
capability that created the identity key at the time that the key was generated. This may be useful in the
event that capabilities are field-upgraded.

The phrase “TCPA Trusted Platform Module identity” identifies a data structure as a Trusted Platform
Module identity and enables the Privacy CA to sign the data with a key that is not exclusively reserved for
signing TPM identities.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.
Description
When an entity presents evidence that an identity belongs to a Subsystem, that evidence SHALL include
the data in the data structure TPM_IDENTITY_CREDENTIAL.
struct TPM_IDENTITY_CREDENTIAL ={

ASCII_STRING “TCPA Trusted Platform Identity”
UNICODE identityLabel
TCPA_PUBKEY identityPubKey
REFERENCE tpm_model
REFERENCE tpm_distributed_validation
CONFORM_UID tpm_pp
CONFORM_UID tpm_st
REFERENCE platform_model
REFERENCE platform_distributed_validation
CONFORM_UID foundation_pp
CONFORM_UID foundation_st
REFERENCE p-ca_reference
TCPA_VERSION TCPA_VERSION
SIGNATURE signature_value}

This is an abstract definition; section 9.5.5 contains the concrete representation.

TCPA Main Specification Page 91

Version 1.1a 1 December 2001

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Platform
Module Identity”

This SHALL be the ASCII string “TCPA
Trusted Platform Identity.”

UNICODE identityLabel This SHALL be a textual string associated
with the TPM identity.

TCPA_PUBKEY identityPubKey This SHALL be a public key associated with
the TPM identity.

REFERENCE tpm_model This SHALL be a reference to the type of TPM
in the platform, plus a reference to the identity
of the manufacturer of TPM.

REFERENCE tpm_distributed_validation This SHALL be fields that indicate the security
qualities of the TPM in the platform.

CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM

CONFORM_UID tpm_st This SHALL be the UID that unambiguously
identifies the security target of the TPM

REFERENCE platform_model This SHALL be a reference to the type of the
platform, including the TCPA foundations in
the platform, plus a reference to the identity of
the manufacturer of that platform.

REFERENCE platform_distributed_valid
ation

This SHALL be fields that indicate the security
qualities of the platform.

CONFORM_UID foundation_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID foundation_st This SHALL be the UID that unambiguously
identifies the security target of the TCPA
foundations in the platform.

REFERENCE p-ca_reference This SHALL be an unambiguous indication of
the identity of the (Privacy CA) entity that
attests to the TPM identity.

TCPA_VERSION TCPA_VERSION This SHALL be the version specified in
section 4.5.

SIGNATURE signature_value This SHALL be the signature over all previous
fields in TPM_IDENTITY_CREDENTIAL,
using the private key of the p-ca_reference.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

TCPA Main Specification Page 92

Version 1.1a 1 December 2001

4.33 Command Ordinals
Start of informative comment:
The command ordinals provide the index value for each command. The following list contains both the
index value and a flag that indicates the default audit state of the command. The commands selected to be
audited by default are those that substantially change the state of the TPM and/or the protected storage
hierarchy.

TCPA commands are divided into three classes: Protected/Unprotected, Non-Connection/Connection
related, and TCPA/Vendor.

End of informative comment.

Ordinals are 32 bit values. The upper byte contains values that serve as flag indicators, the next byte
contains values indicating what committee designated the ordinal, and the final two bytes contain the
Command Ordinal Index.

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+-+
|P|C|V| Reserved| Purview | Command Ordinal Index |
+-+

Where:

• P is Protected/Unprotected command. When 0 the command is a Protected command, when 1
the command is an Unprotected command.

• C is Non-Connection/Connection related command. When 0 this command passes through to
either the protected (TPM) or unprotected (TSS) components.

• V is TCPA/Vendor command. When 0 the command is TCPA defined, when 1 the command is
vendor defined.

• All reserved area bits are set to 0.

The following masks are created to allow for the quick definition of the commands

Value Event Name Comments

0x00000000 TCPA_PROTECTED_COMMAND TPM protected command, specified in main
specification

0x80000000 TCPA_UNPROTECTED_COMMAND TSS command, specified in the TSS
specification

0x40000000 TCPA_CONNECTION_COMMAND TSC command, protected connection
commands are specified in the main
specification. Unprotected connection
commands are specified in the TSS.

0x20000000 TCPA_VENDOR_COMMAND Command that is vendor specific for a given
TPM or TSS.

TCPA Main Specification Page 93

Version 1.1a 1 December 2001

The following Purviews have been defined:

Value Event Name Comments

0x00 TCPA_MAIN Command is from the main specification

0x01 TCPA_PC Command is specific to the PC

0x02 TCPA_PDA Command is specific to a PDA

0x03 TCPA_CELL_PHONE Command is specific to a cell phone

Combinations for the main specification would be

Value Event Name

TCPA_PROTECTED_COMMAND | TCPA_MAIN TCPA_PROTECTED_ORDINAL

TCPA_UNPROTECTED_COMMAND | TCPA_MAIN TCPA_UNPROTECTED_ORDINAL

TCPA_CONNECTION_COMMAND | TCPA_MAIN TCPA_CONNECTION_ORDINAL

If a command is tagged from the audit column the default state is that use of that command SHALL be
audited. Otherwise, the default state is that use of that command SHALL NOT be audited.

TCPA_PROTECTED_ORDINAL
+

Audit

TPM_ORD_OIAP 10
TPM_ORD_OSAP 11
TPM_ORD_ChangeAuth 12
TPM_ORD_TakeOwnership 13 x
TPM_ORD_ChangeAuthAsymStart 14
TPM_ORD_ChangeAuthAsymFinish 15
TPM_ORD_ChangeAuthOwner 16 x

TPM_ORD_Extend 20
TPM_ORD_PcrRead 21
TPM_ORD_Quote 22
TPM_ORD_Seal 23 x
TPM_ORD_Unseal 24
TPM_ORD_DirWriteAuth 25 x
TPM_ORD_DirRead 26

TPM_ORD_UnBind 30
TPM_ORD_CreateWrapKey 31 x
TPM_ORD_LoadKey 32
TPM_ORD_GetPubKey 33
TPM_ORD_EvictKey 34

TPM_ORD_CreateMigrationBlob 40 x
TPM_ORD_ReWrapKey 41
TPM_ORD_ConvertMigrationBlob 42 x
TPM_ORD_AuthorizeMigrationKey 43 x
TPM_ORD_CreateMaintenanceArchive 44 x
TPM_ORD_LoadMaintenanceArchive 45 x
TPM_ORD_KillMaintenanceFeature 46 x
TPM_ORD_LoadManuMaintPub 47 x

TCPA Main Specification Page 94

Version 1.1a 1 December 2001

TPM_ORD_ReadManuMaintPub 48 x

TPM_ORD_CertifyKey 50

TPM_ORD_Sign 60

TPM_ORD_GetRandom 70
TPM_ORD_StirRandom 71

TPM_ORD_SelfTestFull 80
TPM_ORD_SelfTestStartup 81
TPM_ORD_CertifySelfTest 82
TPM_ORD_ContinueSelfTest 83
TPM_ORD_GetTestResult 84

TPM_ORD_Reset 90 x
TPM_ORD_OwnerClear 91 x
TPM_ORD_DisableOwnerClear 92 x
TPM_ORD_ForceClear 93 x
TPM_ORD_DisableForceClear 94 x

TPM_ORD_GetCapabilitySigned 100
TPM_ORD_GetCapability 101
TPM_ORD_GetCapabilityOwner 102

TPM_ORD_OwnerSetDisable 110 x
TPM_ORD_PhysicalEnable 111 x
TPM_ORD_PhysicalDisable 112 x
TPM_ORD_SetOwnerInstall 113 x
TPM_ORD_PhysicalSetDeactivated 114 x
TPM_ORD_SetTempDeactivated 115 x

TPM_ORD_CreateEndorsementKeyPair 120 x
TPM_ORD_MakeIdentity 121 x
TPM_ORD_ActivateIdentity 122 x
TPM_ORD_ReadPubek 124 x
TPM_ORD_OwnerReadPubek 125 x
TPM_ORD_DisablePubekRead 126 x

TPM_ORD_GetAuditEvent 130 x
TPM_ORD_GetAuditEventSigned 131 x

TPM_ORD_GetOrdinalAuditStatus 140
TPM_ORD_SetOrdinalAuditStatus 141 x

TPM_ORD_Terminate_Handle 150
TPM_ORD_Init 151 x
TPM_ORD_SaveState 152 x
TPM_ORD_Startup 153 x
TPM_ORD_SetRedirection 154 x

TPM_ORD_SHA1Start 160
TPM_ORD_SHA1Update 161
TPM_ORD_SHA1Complete 162

TCPA Main Specification Page 95

Version 1.1a 1 December 2001

TPM_ORD_SHA1CompleteExtend 163

TPM_ORD_FieldUpgrade 170

TPM_ORD_SaveKeyContext 180
TPM_ORD_LoadKeyContext 181
TPM_ORD_SaveAuthContext 182
TPM_ORD_LoadAuthContext 183

The connection commands manage the TPM’s connection to the TBB.
TCPA_CONNECTION_ORDINAL +

TSC_ORD_PhysicalPresence 10

TCPA Main Specification Page 96

Version 1.1a 1 December 2001

5. Authorization and Ownership

5.1 Introduction
Start of informative comment:

The purpose of the authorization mechanism is to authenticate an owner and to authorize use of an entity.
The basic premise is to prove knowledge of a shared secret. This shared secret is the authorization data.

Authorization data is available for the TPM Owner and each entity (keys, for example) that the TPM
controls. The authorization data for the TPM Owner and the SRK are held within the TPM itself and the
authorization data for other entities are held with the entity.

The TPM Owner authorization data allows the Owner to prove ownership of the TPM. Proving ownership of
the TPM does not immediately allow all operations – the TPM Owner is not a “super user” and additional
authorization data must be provided for each entity or operation that has protection.

The TPM treats knowledge of the authorization data as complete proof of ownership of the entity. No other
checks are necessary. The requestor (any entity that wishes to execute a command on the TPM or use a
specific entity) may have additional protections and requirements where he or she (or it) saves the
authorization data; however, the TPM places no additional requirements.

There are two protocols to securely pass a proof of knowledge of authorization data from requestor to TPM;
the “Object-Independent Authorization Protocol” (OI-AP) and the “Object-Specific Authorization Protocol”
(OS-AP). The OI-AP supports multiple authorization sessions for arbitrary entities. The OS-AP supports an
authentication session for a single entity and enables the confidential transmission of new authorization
information. That new authorization information is inserted by the “Authorization Data Insertion Protocol”
(ADIP) during the creation of an entity. The “Authorization Data Change Protocol” (ADCP) and the
“Asymmetric Authorization Change Protocol” (AACP) allow the changing of the authorization data for an
entity. The protocol definitions allow expansion of protocol types to additional TCPA required protocols and
vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in use only for a
message and its reply. For instance, the TPM would create a nonce and send that on a reply. The requestor
would receive that nonce and then include it in the next request. The TPM would validate that the correct
nonce was in the request and then create a new nonce for the reply. This mechanism is in place to prevent
replay attacks and man-in-the-middle attacks.

The basic protocols do not provide long-term protection of authorization data that is the hash of a password
or other low-entropy entities. The TPM designer and application writer must supply additional protocols if
protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and parameter
authentication and prevent replay and man-in-the-middle attacks.

The passing of the authorization data, nonces and other parameters must follow specific guidelines so that
commands coming from different computer architectures will interoperate properly.

End of informative comment.

All entity authorizations requiring authorization MUST use the authorization data protocols.

The TPM MUST support the OI-AP and the OS-AP which enable proof of knowledge of authorization data
while maintaining the secrecy of that authorization data.

The TPM MUST support the ADIP that inserts the authorization during entity creation.

The TPM MUST support the ADCP and AACP which allow for the changing of authorization data.

The TPM MUST support TPM_Terminate_Handle which forces the termination of a session.

The TPM MAY support additional protocols to authenticate, insert and change authorization data.

TCPA Main Specification Page 97

Version 1.1a 1 December 2001

The TPM MUST support the ability to calculate a HMAC in order to verify authorization data independent
of the source or transmission mechanism. The TPM MUST calculate the HMAC digest according to
section 8.6. The TPM MUST NOT perform the HMAC calculation for a returning message when the
authorization for the command fails or the command fails for any other reason.

If a command has more than one authorization value, each authorization session MUST use the same
SHA-1 parameter digest (<paramDigest> from Sect. 4.4.2) plus its respective authorization setup
parameters (nonces, authHandles, etc) in the HMAC calculation. For example, the capability
9.3.1TPM_MakeIdentity requires authorization from both the TPM Owner and from the SRK owner. So
the authentication information “TpmOwnerAuth” and “SrkAuth” are each calculated over all parameters
tagged with an ‘S’ subscript in the definition of TPM_MakeIdentity.

All commands that use keys normally include at least one authorization session in the input parameters. If
AuthDataUsage is set to TPM_AUTH_NEVER for that key, then the command does not need to be
authorized. To implement this, the 5 authorization parameters at the end of the input parameter list should
be removed and the tag value (first parameter) changed from TPM_TAG_RQU_AUTH1_COMMAND to
TPM_TAG_RQU_COMMAND.

When an incoming command includes an authorization session but the authorized key has
AuthDataUsage set to NEVER the TPM MUST perform the following:

• If the value of the command tag is TPM_TAG_RQU_AUTH1_COMMAND the TPM will compute
the authorization based on the value store in the authorization location within the key, IGNORING
the state of the AuthDataUsage flag.

• Users may choose to use a well-known value for the authorization data when setting
AuthDataUsage to NEVER.

For commands that normally have 2 authorization sessions, if the tag specifies only one in the parameter
array, then the first session listed is ignored (authDataUsage must be NEVER for this key) and the
incoming session data is used for the second auth session in the list.

TCPA Main Specification Page 98

Version 1.1a 1 December 2001

5.1.1 Tag Usage
This table summarizes what can be the tag with a given TPM command.

 Tag

Section Name AU
TH

2_
C

O
M

M
AN

D

AU
TH

1_
C

O
M

M
AN

D

R
Q

U
_C

O
M

M
AN

D

5.6.1 TPM_ChangeAuth x
5.6.2 TPM_ChangeAuthOwner x
5.7.1 TPM_ChangeAuthAsymStart x x
5.7.2 TPM_ChangeAuthAsymFinish x x
5.11.1 TPM_TakeOwnership x
6.3.3 TPM_Quote x x
6.3.4 TPM_DirWriteAuth x
7.2.1 TPM_Seal x
7.2.2 TPM_Unseal x x
7.2.4 TPM_UnBind x x
7.2.5 TPM_CreateWrapKey x
7.2.8 TPM_LoadKey x x
7.2.10 TPM_GetPubKey x x
7.2.11 TPM_CreateMigrationBlob x x x
0 TPM_ConvertMigrationBlob x x
7.2.13 TPM_AuthorizeMigrationKey x
7.3.1 TPM_CreateMaintenanceArchive x
7.3.2 TPM_LoadMaintenanceArchive x
7.3.3 TPM_KillMaintenanceFeature x
8.3.1 TPM_CertifyKey x x x
8.7.1 TPM_Sign x x
8.9.2 TPM_CertifySelfTest x x
0 TPM_OwnerClear x
8.10.6 TPM_DisableOwnerClear x
8.11.2 TPM_GetCapabilitySigned x x
8.11.3 TPM_GetCapabilityOwner x
8.12.2 TPM_GetAuditEventSigned x x
8.12.3 TPM_SetOrdinalAuditStatus x
8.14.1 TPM_OwnerSetDisable x
8.17 TPM_SetRedirection x x
9.2.3 TPM_DisablePubekRead x
9.2.4 TPM_OwnerReadPubek x
9.3.1 TPM_MakeIdentity x x
9.3.4 TPM_ActivateIdentity x x

TCPA Main Specification Page 99

Version 1.1a 1 December 2001

5.2 Authorization protocols
Start of informative comment:
The TPM provides two protocols for authorizing the use of entities without revealing the authorization data
on the network or the connection to the TPM. In both cases, the protocol exchanges nonce-data so that
both sides of the transaction can compute a hash using shared secrets and nonce-data. Each side
generates the hash value and can compare to the value transmitted. Network listeners cannot directly infer
the authorization data from the hashed objects sent over the network.

The first protocol is the “Object-Independent Authorization Protocol” (OI-AP), which allows the exchange of
nonces with a specific TPM. Once an OI-AP session is established, its nonces can be used to authorize the
use any entity managed by the TPM. The session can live indefinitely until either party request the session
termination. The TPM_OIAP function starts the OI-AP session.

The second protocol is the “Object Specific Authorization Protocol” (OS-AP)”. The OS-AP allows
establishment of an authentication session for a single entity. The session creates nonces that can
authorize multiple commands without additional session-establishment overhead, but is bound to a specific
entity. The TPM_OSAP command starts the OS-AP session. The TPM_OSAP specifies the entity to which
the authorization is bound.

Most commands allow either form of authorization protocol. In general, however, the OI-AP is preferred – it
is more generally useful because it allows usage of the same session to provide authorization for different
entities. The OS-AP is, however, necessary for operations that set or reset authorization data.

OI-AP sessions were designed for reasons of efficiency; only one setup process is required for potentially
many authorizations.

An OS-AP session is doubly efficient because only one setup process is required for potentially many
authorization calculations and the entity authorization secret is required only once. This minimizes exposure
of the authorization secret and can minimize human interaction in the case where a person supplies the
authorization information. The disadvantage of the OS-AP is that a distinct session needs to be setup for
each entity that requires authorization. The OS-AP creates an ephemeral secret that is used throughout the
session instead of the entity authorization secret. The ephemeral secret can be used to provide
confidentiality for the introduction of new authorization data during the creation of new entities. Termination
of the OS-AP occurs in two ways. Either side can request session termination (as usual) but the TPM forces
the termination of an OS-AP session after use of the ephemeral secret for the introduction of new
authorization data.

For both the OS-AP and the OI-AP, session setup is independent of the commands that are authorized. In
the case of OI-AP, the requestor sends the TPM_OIAP command, and with the response generated by the
TPM, can immediately begin authorizing object actions. The OS-AP is very similar, and starts with the
requestor sending a TPM_OSAP operation, naming the entity to which the authorization session should be
bound.

Both session types use a “rolling nonce” paradigm. This means that the TPM creates a new nonce value
each time the TPM uses the session for a HMAC calculation.

Note that some operations involve the use of two authorization elements (for example, UNSEAL requires
the authorization data of the object itself and authorization data of the object’s parent). In this case, two
separate sessions are required. It is not possible to use one session for both purposes.

TCPA Main Specification Page 100

Version 1.1a 1 December 2001

For the purposes of the informative comments for the individual protocols, the following example command
will be used, named TPM_Example. Not that this command has a single authorization session, and that the
authorization secret is the auth value stored with some key. Commands in this document have from 0 to 2
authorization sessions.

Some commands within this document use secrets other than the auth value in a key. Two examples would
be owner authorized commands, or commands using key.Migration as the secret. In this case,
key.usageAuth in the examples below would be replaced with ownerAuth, key.Migration or other secrets as
necessary. In all cases, the secret used to compute the authorization digest is noted in the description for
the actual digest parameter within the command parameter lists.

Incoming Operands and Sizes
Param HMAC

Sz # Sz
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 TCPA_KEY_HANDLE keyHandle Handle of a loaded key.

5 1 2S 1 BOOL inArgOne The first input argument

6 20 3S 20 UNIT32 inArgTwo The second input argument.

7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization.

 2H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA inAuth The authorization digest for inputs and keyHandle. HMAC
key: key.usageAuth.

Outgoing Operands and Sizes
Param HMAC

Sz # Sz
Type Name Description

1 2 TCPA_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 3S 4 UINT32 outArgOne Output argument

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth.

End of informative comment.

TCPA Main Specification Page 101

Version 1.1a 1 December 2001

5.2.1 OI-AP description
Start of informative comment:

The purpose of this section is to illustrate the OI-AP without regard to a specific command. OI-AP uses the
TPM_OIAP command to create the authorization session. See Section 5.2.2 for the TPM_OIAP description

Assume that a TPM user wishes to send command TPM_Example. This is an authorized command that
uses the key denoted by keyHandle. The user must know the authorization data for keyHandle
(key.usageAuth) as this is the entity that requires authorization and this secret is used in the authorization
calculation. Let us assume for this example that the caller of TPM_Example does not need to authorize the
use of keyHandle for more than one command. This use model points to the selection of the OI-AP as the
authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to execute the
command. The following table shows the commands executed, the parameters created and the wire
formats of all of the information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, inArgTwo).
<outParamDigest> is the result of the following calculation: SHA1(returnCode, ordinal, outArgOne).
inAuthSetupParams refers to the following parameters, in this order: auth Handle, authLastNonceEven,
nonceOdd, continueAuthSession. OutAuthSetupParams refers to the following parameters, in this order:
auth Handle, nonceEven, nonceOdd, continueAuthSession

TCPA Main Specification Page 102

Version 1.1a 1 December 2001

There are two even nonces used to execute TPM_Example, the one generated as part of the TPM_OAIP
command (labeled authLastNonceEven below) and the one generated with the output arguments of
TPM_Example (labeled as nonceEven below).

Caller On the wire Dir TPM
Send TPM_OIAP TPM_OIAP ! • Create session

• Create authHangle
• Associate session and authHandle
• Generate authLastNonceEven
• Save authLastonceEven with authHandle

Save authHandle,
authLastNonceEven

authHandle,
authLastNonceEven

" Returns

• Generate nonceOdd
• Compute inAuth =

HMAC (key.usageAuth,
inParamDigest,
inAuthSetupParams)

• Save nonceOdd with
authHandle

Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
authHandle
nonceOdd
continueAuthSession
inAuth

! • TPM retrieves key.usageAuth (key must have
been previously loaded)

• Verify authHandle points to a valid session,
mismatch returns TPM_E_INVALIDAUTH

• Retrieve authLastNonceEven from internal
session storage

• HM = HMAC (key.usageAuth, inParamDigest
inAuthSetupParams)

• Compare HM to inAuth. If they do not
compare return with TPM_E_INVALIDAUTH

• Execute TPM_Example and create
returnCode

• Generate nonceEven to replace
authLastNonceEven in session

• Set resAuth = HMAC(key.usageAuth,
outParamDigest, outAuthSetupParams)

• Save nonceEven
• HM = HMAC(

key.usageAuth,
outParamDigest,
outAuthSetupParams)

• Compare HM to
resAuth. This verifies
returnCode and output
parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

" • Return output parameters
• If continueAuthSession is FALSE then destroy

session

TCPA Main Specification Page 103

Version 1.1a 1 December 2001

Suppose now that the TPM user wishes to send another command using the same session. For the
purposes of this example, we will assume that the same ordinal is to be used (TPM_Example) but that a
different key (newKey) with its own secret (newKey.usageAuth) is to be operated on. To re-use the previous
session, the continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire formats of all of
the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the output parameters
from the first execution of TPM_Example.

Caller On the wire Dir TPM
• Generate nonceOdd
• Compute inAuth =

HMAC
(newKey.usageAuth,
inParamDigest,
inAuthSetupParams)

• Save nonceOdd with
authHandle

• Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
nonceOdd
continueAuthSession
inAuth

! • TPM retrieves newKey.usageAuth
(newKey must have been previously
loaded)

• Retrieve authLastNonceEven from
internal session storage

• HM = HMAC (newKey.usageAuth,
inParamDigest, inAuthSetupParams)

• Compare HM to inAuth. If they do not
compare return with
TPM_E_INVALIDAUTH

• Execute TPM_Example and create
returnCode

• Generate nonceEven to replace
authLastNonceEven in session

• Set resAuth = HMAC(newKey.usageAuth,
outParamDigest, outAuthSetupParams)

• Save nonceEven
• HM = HMAC(

newKey.usageAuth,
outParamDigest,
outAuthSetupParams)

• Compare HM to resAuth
This verifies returnCode
and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

" • Return output parameters
• If continueAuthSession is FALSE then

destroy session

TCPA Main Specification Page 104

Version 1.1a 1 December 2001

The TPM user could then use the session for further authorization sessions. Suppose, however, that the
TPM user no longer requires the authorization session. There are three possibilities in this case:

• The user issues a TPM_Terminate_Handle command to the TPM (section 5.3).

• The input argument continueAuthSession can be set to FALSE for the last command. In this case, the
output continueAuthSession value will be FALSE.

• In some cases, the TPM automatically terminates the authorization session regardless of the input
value of continueAuthSession. In this case as well, the output continueAuthSession value will be
FALSE.

When an authorization session is terminated for any reason, the TPM invalidates the session’s handle
and terminates the session’s thread (releases all resources allocated to the session).

End of informative comment

TCPA Main Specification Page 105

Version 1.1a 1 December 2001

5.2.2 TPM_OIAP
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_OIAP.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TCPA_NONCE nonceEven Nonce generated by TPM and associated with session.

Actions
1. The TPM_OIAP command allows the creation of an authorization handle and the tracking of the

handle by the TPM. The TPM generates the handle and nonce.

2. The TPM has an internal limit as to the number of handles that may be open at one time, so the
request for a new handle may fail if there is insufficient space available.

3. Internally the TPM will do the following:

a) TPM allocates space to save handle, protocol identification, both nonces and any other
information the TPM needs to manage the session.

b) TPM generates authHandle and nonceEven, returns these to caller

4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven value.

TCPA Main Specification Page 106

Version 1.1a 1 December 2001

5.2.3 Authorization using an OI-AP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OI-AP protocol.

Many commands use OI-AP authorization. The following description is therefore necessarily abstract.

End of informative comment.

Actions
perform the following actions:

1. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TCPA_AUTHFAIL.

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and
continueAuthSession flag from the input parameter list, and store it in internal TPM memory with
the authSession ‘H’.

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the authorization
session H (authLastNonceEven) computed during the previously executed command.

4. The TPM MUST retrieve the secret authorization data (SecretE, say) of the target entity. The
entity and its secret must have been previously loaded into the TPM.

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input
command parameters and authorization parameters per section 4.4.2.

6. The TPM SHALL compare HM to the authorization value received in the input parameters. If they
are different, the TPM returns the error code TCPA_AUTHFAIL. Otherwise, the TPM executes
the command which (for this example) produces an output that requires authentication.

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and
authorization parameters to the same entity secret per section 4.4.2

9. The TPM returns the return code, output parameters, authorization parameters and authorization
digest.

10. If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. Future
references to H will return an error.

TCPA Main Specification Page 107

Version 1.1a 1 December 2001

5.2.4 OS-AP Description
Start of informative comment:

The OS-AP command creates an ephemeral secret to authenticate a session. The purpose of this section is
to illustrate the OS-AP without regard to a specific command. See Section 5.2.5 for the TPM_OSAP
description which is used to create this authorization session.

Assume that a TPM user wishes to send command TPM_Example. This is an authorized command that
uses the key denoted by keyHandle. The user must know the authorization data for keyHandle
(key.usageAuth) as this is the entity that requires authorization and this secret is used in the authorization
calculation.

Let us assume for this example that the caller of TPM_Example needs to use this key multiple times but
does not wish to obtain the key secret more than once. This might be the case if, for example, the usage
authorization data were derived from a typed password. This use model points to the selection of the OS-
AP as the authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to execute the
command. The following table shows the commands executed, the parameters created and the wire
formats of all of the information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, inArgTwo).
<outParamDigest> is the result of the following calculation: SHA1(returnCode, ordinal, outArgOne).
inAuthSetupParams refers to the following parameters, in this order: authLastNonceEven, nonceOdd,
continueAuthSession. OutAuthSetupParams refers to the following parameters, in this order: nonceEven,
nonceOdd, continueAuthSession

In addition to the two even nonces generated by the TPM (authLastNonceEven and nonceEven) that are
used for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is used to generate the shared secret.
For every even nonce, there is also an odd nonce generated by the system.

TCPA Main Specification Page 108

Version 1.1a 1 December 2001

Caller On the wire Dir TPM
Send TPM_OSAP TPM_OSAP

keyHandle
nonceOddOSAP

! • Create session & authHangle
• Generate authLastNonceEven
• Save authLastonceEven with authHandle
• Generate nonceEvenOSAP
• Generate sharedSecret =

HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)

• Save keyHandle, sharedSecret with
authHandle

• Save authHandle,
authLastNonceEven

• Generate sharedSecret =
HMAC(key.usageAuth,
nonceEvenOSAP,
nonceOddOSAP)

• Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

" Returns

• Generate nonceOdd &
save with authHandle.

• Compute inAuth =
HMAC (sharedSecret,
inParamDigest,
inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
authHandle
nonceOdd
continueAuthSession
inAuth

! • Verify authHandle points to a valid session
mismatch returns TPM_AUTHFAIL

• Retrieve authLastNonceEven from internal
session storage

• HM = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

• Compare HM to inAuth. If they do not
compare return with TPM_AUTHFAIL

• Execute TPM_Example and create
returnCode

• Generate nonceEven to replace
authLastNonceEven in session

• Set resAuth = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

• Save nonceEven
• HM = HMAC(

sharedSecret,
outParamDigest,
outAuthSetupParams)

• Compare HM to resAuth.
This verifies returnCode
and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

" • Return output parameters
• If continueAuthSession is FALSE then

destroy session

TCPA Main Specification Page 109

Version 1.1a 1 December 2001

Suppose now that the TPM user wishes to send another command using the same session to operate on
the same key. For the purposes of this example, we will assume that the same ordinal is to be used
(TPM_Example). To re-use the previous session, the continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire formats of all of
the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the output parameters
from the first execution of TPM_Example.

Caller On the wire Dir TPM
• Generate nonceOdd
• Compute inAuth =

HMAC (sharedSecret,
inParamDigest,
inAuthSetupParams)

• Save nonceOdd with
authHandle

• Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
nonceOdd
continueAuthSession
inAuth

! • Retrieve authLastNonceEven from
internal session storage

• HM = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

• Compare HM to inAuth. If they do not
compare return with TPM_AUTHFAIL

• Execute TPM_Example and create
returnCode

• Generate nonceEven to replace
authLastNonceEven in session

• Set resAuth = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

• Save nonceEven
• HM = HMAC(

sharedSecret,
outParamDigest,
outAuthSetupParams)

• Compare HM to resAuth
This verifies returnCode
and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

" • Return output parameters
• If continueAuthSession is FALSE then

destroy session

The TPM user could then use the session for further authorization sessions or terminate it in the ways that
have been described above in TPM_OIAP. Note that termination of the OSAP session causes the TPM to
destroy the shared secret.

End of informative comment.

TCPA Main Specification Page 110

Version 1.1a 1 December 2001

5.2.5 TPM_OSAP
Start of informative comment:

The TPM_OSAP command creates the authorization handle, the shared secret and generates
nonceEven and nonceEvenOSAP.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_OSAP.

4 2 TCPA_ENTITY_TYPE entityType The type of entity in use

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 20 TCPA_NONCE nonceOddOSAP The nonce generated by the caller associated with the shared
secret.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TCPA_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TCPA_NONCE nonceEvenOSAP Nonce generated by TPM and associated with shared secret.

Actions
1. The TPM_OSAP command allows the creation of an authorization handle and the tracking of the

handle by the TPM. The TPM generates the handle, nonceEven and nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows the caller to
continue to send in authorization data for each command but not have to request the information or
cache the actual authorization data.

4. Internally the TPM will do the following:

a. TPM receives command.

TCPA Main Specification Page 111

Version 1.1a 1 December 2001

b. TPM generates new handle and reserves space to save protocol identification, shared
secret, both nonces and any other information the TPM needs to manage the session.

c. TPM generates nonces nonceEven and nonceEvenOSAP.

d. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC
calculation is the secret authorization data assigned to the key handle identified by
entityValue. The input to the HMAC calculation is the concatenation of nonces
nonceEvenOSAP and nonceOddOSAP. The output of the HMAC calculation is the
shared secret which is saved in the authorization area associated with authHandle

Descriptions

entityType = TCPA_ET_KEYHANDLE

The entity to authorize is a key held in the TPM. entityValue contains the keyHandle that holds the key.

entityType = TCPA_ET_OWNER

This value indicates that the entity is the TPM owner. entityValue is ignored.

entityType = TCPA_ET_SRK

The entity to authorize is the SRK. entityValue is ignored.

Usage

On each subsequent use of the OSAP session the TPM MUST generate a new nonce value.

The TPM MUST ensure that OS-AP shared secret is only available while the OS-AP session is valid.

Termination

The session MUST terminate upon any of the following conditions:

• The entity is unloaded.

• The entity has a change authorization performed on it.

• The session is used in a TPM_ChangeAuth command.

• The command that uses the session returns an error.

TCPA Main Specification Page 112

Version 1.1a 1 December 2001

5.2.6 Authorization using an OS-AP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OS-AP protocol.

Many commands use OS-AP authorization. The following description is therefore necessarily abstract.

End of informative comment
Actions
On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target entity when
the authorization session was established with TPM_OSAP. The entity and its secret must have been
previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a
valid session. If it does not, the TPM returns the error code TPM_AUTHFAIL.

3. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according to section
4.4.2

4. The TPM SHALL compare HM1 to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_AUTHFAIL. Otherwise, the TPM executes command
C1 which produces an output (O, say) that requires authentication and uses a particular return code
(RC, say).

5. The TPM SHALL generate the latest version of the even nonce (nonceEven).

6. The TPM MUST calculate the HMAC (HM2) of the return parameters according to section 4.4.2

7. The TPM returns HM2 in the parameter list.

8. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

If the shared secret was used to provide confidentiality for data in the received command, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

Each time that access to an entity (key) is authorized using OSAP, the TPM MUST ensure that the OSAP
shared secret is that derived from the entity using TPM_OSAP.

TCPA Main Specification Page 113

Version 1.1a 1 December 2001

5.3 TPM_Terminate_Handle
Start of informative comment:
This allows the TPM manager to clear out information in a session handle.

The TPM may maintain the authorization session even though a key attached to it has been unloaded or
the authorization session itself has been unloaded in some way. When a command is executed that
requires this session, it is the responsibility of the external software to load both the entity and the
authorization session information prior to command execution.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Terminate_Handle.

4 4 TCPA_AUTHHANDLE handle The handle to terminate

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Descriptions

A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of the following
events:

• Completion of a received command whose authorization “continueUse” flag is FALSE.

• Completion of a received command when a shared secret derived from the authorization session
was exclusive-or’ed with data (to provide confidentiality for that data). This occurs during
execution of a TPM_ChangeAuth command, for example.

• When the associated entity is destroyed (in the case of TPM Owner or SRK, for example)

• Upon execution of TPM_Init

• When the command returns an error. This is due to the fact that when returning an error the TPM
does not send back nonceEven. There is no way to maintain the rolling nonces, hence the TPM
MUST terminate the authorization session.

• Failure of an authorization check belonging to that authorization session.

Actions
The TPM SHALL terminate the session and destroy all data associated with the session indicated.

TCPA Main Specification Page 114

Version 1.1a 1 December 2001

5.4 ADIP – Creating a New Entity
Start of informative comment:
The creation of the authorization data is the responsibility of the entity owner. He or she may use
whatever process he or she wishes. The transmission of the authorization data from the owner to the
TPM requires confidentiality and integrity. The encryption of the authorization data meets these
requirements. The confidentiality and integrity requirements assume the insertion of the authorization
data occurs over a network. While local insertions of the data would not require these measures, the
protocol is established to be consistent with both local and remote insertions.

When the requestor is sending the authorization data to the TPM, the command to load the data requires
the authorization of the entity owner. For example, to create a new TPM ID and set its authorization data
requires the authorization data of the TPM Owner.

The confidentiality of the transmission comes from the encryption of the authorization data, and the
integrity comes from the ability of the owner to verify that the authorization is being sent to a TPM and
that only a specific TPM can decrypt the data.

The mechanism uses the following features of the TPM, OS-AP and HMAC.

• The creation of a new entity requires the authorization of the entity owner. When the requestor starts
the creation process, the creator must use OS-AP.

• The creator builds an encryption key using a SHA-1 hash of the shared secret from the OS-AP
mechanism and the nonce (authLastNonceEven) returned by the TPM from the TPM_OSAP
command.

• The creator encrypts the new authorization data using the key from the previous step as a one-time
pad with XOR and then sends this encrypted data along with the creation request to the TPM.

• The TPM decrypts the authorization data using the OS-AP shared secret and authLastNonceEven,
creates the new entity.

• The TPM includes the sends the reply back to the creator using the new authorization data as the
secret value of the HMAC.

The creator believes that the OS-AP creates a shared secret known only to the creator and the TPM. The
TPM believes that the creator is the entity owner by their knowledge of the parent entity authorization
data. The creator believes that the process completed correctly and that the authorization data is correct
because the HMAC will only verify with the OS-AP secret.

The ADIP allows for the creation of new entities and the secure insertion of the new entity authorization
data. The transmission of the new authorization data uses encryption with the key being a shared secret
of an OS-AP session.

The OS-AP session must be created using the owner of the new entity.

In the following example, we want to send the previously described command TPM_EXAMPLE to create
a new entity. In the example, we assume there is a third input parameter newAuth, and that one of the
input parameters is named parentHandle to reference the parent for the new entity (TPM Owner in some
circumstances such as the SRK and its children, otherwise a key).

TCPA Main Specification Page 115

Version 1.1a 1 December 2001

Caller On the wire Dir TPM
Send TPM_OSAP TPM_OSAP

parentHandle
nonceOddOSAP

! • Create session & authHangle
• Generate authLastNonceEven
• Save authLastonceEven with authHandle
• Generate nonceEvenOSAP
• Generate sharedSecret =

HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)

• Save parentHandle, sharedSecret with
authHandle

• Save authHandle,
authLastNonceEven

• Generate sharedSecret
=
HMAC(parent.usageAut
h, nonceEvenOSAP,
nonceOddOSAP)

• Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

" Returns

• Generate nonceOdd
& save with
authHandle.

• Compute input
parameter newAuth
= XOR(
entityAuthData,
SHA1(sharedSecret,
authLastNonceEven)
)

• Compute inAuth =
HMAC
(sharedSecret,
inParamDigest,
inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
newAuth
authHandle
nonceOdd
continueAuthSessio
n
inAuth

! • Verify authHandle points to a valid
session, mismatch returns
TPM_AUTHFAIL

• Retrieve authLastNonceEven from
internal session storage

• HM = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

• Compare HM to inAuth. If they do not
compare return with TPM_AUTHFAIL

• Compute entityAuthData = XOR(
newAuth, SHA1(sharedSecret,
authLastNonceEven))

• Execute TPM_Example, create entity
and build returnCode

• Generate nonceEven to replace
authLastNonceEven in session

• Set resAuth = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

TCPA Main Specification Page 116

Version 1.1a 1 December 2001

• Save nonceEven
• HM = HMAC(

sharedSecret,
outParamDigest,
outAuthSetupParams)

• Compare HM to resAuth.
This verifies returnCode
and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSessio
n
resAuth

" • Return output parameters
• Destroy auth session associated with

authHandle

End of informative comment.
The TPM MUST enable ADIP by using the OS-AP. The TPM MUST encrypt the authorization data for the
new entity by performing an XOR using the shared secret created by the OS-AP.

The TPM MUST destroy the OS-AP session whenever a new entity is created.

TCPA Main Specification Page 117

Version 1.1a 1 December 2001

5.5 ADCP - Changing Authorization Data
Start of informative comment:
All entities from the Owner to the SRK to individual keys and data blobs have authorization data. This
data may need to change at some point in time after the entity creation. The ADCP allows the entity
owner to change the authorization data. The entity owner of a wrapped key is the owner of the parent
key.

A requirement is that the owner must remember the old authorization data. The only mechanism to
change the authorization data when the entity owner forgets the current value is to delete the entity and
then recreate it.

To protect the data from exposure to eavesdroppers or other attackers, the authorization data uses the
same encryption mechanism in use during the ADIP.

Changing authorization data requires opening two authentication handles. The first handle authenticates
the entity owner (or parent) and the right to load the entity. This first handle is an OS-AP and supplies the
data to encrypt the new authorization data according to the ADIP protocol. The second handle can be
either an OI-AP or an OS-AP, it authorizes access to the entity for which the authorization data is to be
changed.

The authorization data in use to generate the OS-AP shared secret must be the authorization data of the
parent of the entity to which the change will be made.

When changing the authorization data for the SRK, the first handle OS-AP must be setup using the TPM
Owner authorization data. This is because the SRK does not have a parent, per se.

If the SRKAuth data is known to userA and userB, userA can snoop on userB while userB is changing the
authorisation for a child of the SRK, and deduce the child's newAuth. Therefore, if SRKAuth is a well
known value, TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish are preferred over
TPM_ChangeAuth when changing authorisation for children of the SRK.

This applies to all children of the SRK, including TPM identities.

End of informative comment.

Changing authorization data for the TPM SHALL require authorization of the current TPM Owner.

Changing authorization data for the SRK SHALL require authorization of the TPM Owner.

If SRKAuth is a well known value, TPM_ChangeAuth SHOULD NOT be used to change the authorisation
value of a child of the SRK, including the TPM identities.

All other entities SHALL require authorization of the parent entity.

TCPA Main Specification Page 118

Version 1.1a 1 December 2001

5.6 Changing authorization values
Start of informative comment:
Changing authorization comes in two flavors one to handle blobs with authorization and one to handle the
authorization for the TPM Owner and SRK.

Functionally these two commands perform the same operation and operate on the same fields the only
difference lies in who authorizes the operation and where the data comes from.

End of informative comment.

5.6.1 TPM_ChangeAuth
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

TPM_ChangeAuth requires the encryption of one parameter (“NewAuth”). For the sake of uniformity with
other commands that require the encryption of more than one parameter, the string used for XOR
encryption is generated by concatenating the evenNonce (created during the OSAP session) with the
session shared secret and then hashing the result.

The parameter list to this command must always include two authorization sessions, regardless of the
state of authDataUsage for the respective keys.

End of informative comment.
Type
TCPA protected capability; user must provide authorizations for the entity pointed to by parentHandle and
inData.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_ChangeAuth

4 4 TCPA_KEY_HANDLE parentHandle Handle of the parent key to the entity.

5 2 2 S 2 TCPA_PROTOCOL_ID protocolID The protocol in use.

6 20 3 S 20 TCPA_ENCAUTH newAuth
The encrypted new authorization data for the entity.
The encryption key is the shared secret from the OS-
AP protocol.

7 2 4 S 2 TCPA_ENTITY_TYPE entityType The type of entity to be modified

8 4 5 S 4 UINT32 encDataSize The size of the encData parameter

9 <> 6 S <> BYTE[] encData The encrypted entity that is to be modified.

10 4 TCPA_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

11 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
tA thH dl

TCPA Main Specification Page 119

Version 1.1a 1 December 2001

parentAuthHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.

13 20 TCPA_AUTHDATA parentAuth The authorization digest for inputs and parentHandle.
HMAC key: parentKey.usageAuth.

14 4 TCPA_AUTHHANDLE entityAuthHandle The authorization handle used for the encrypted entity.
The session type MUST be OIAP

 2 H2 20 TCPA_NONCE entitylastNonceEven Even nonce previously generated by TPM

15 20 3 H2 20 TCPA_NONCE entitynonceOdd Nonce generated by system associated with
entityAuthHandle

16 1 4 H2 1 BOOL continueEntitySession Ignored, entityAuthHandle is always terminated.

17 20 TCPA_AUTHDATA entityAuth The authorization digest for the inputs and encrypted
entity. HMAC key: entity.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ChangeAuth

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
parentAuthHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters and
parentHandle. HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TCPA_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 3 H2 20 TCPA_NONCE entitynonceOdd Nonce generated by system associated with
entityAuthHandle

10 1 4 H2 1 BOOL entityContinueAuthS
ession Continue use flag, fixed value of FALSE

11 20 TCPA_AUTHDATA entityAuth The authorization digest for the returned parameters and
entity. HMAC key: newly changed entity.usageAuth.

Descriptions

A TPM MUST support the TPM_PID_ADCP protocol.

TPM_PID_ADCP protocol descriptions
The parentAuthHandle session type MUST be TCPA_PID_OSAP.

TCPA Main Specification Page 120

Version 1.1a 1 December 2001

TPM_PID_ADCP protocol actions
1. Verify that entityType is one of TCPA_ET_DATA, TCPA_ET_KEY and return the error

TCPA_WRONG_ENTITYTYPE if not.

2. The encData field MUST be the encData field from either the TCPA_STORED_DATA or TCPA_KEY
structures.

3. Create s1 string by concatenating (parentAuthHandle -> shared secret || authLastNonceEven)

4. Create x1 by performing a SHA1 hash of s1

5. Create decryptAuth by XOR of x1 and newAuth.

6. parentAuthHandle MUST be built using the parent entity’s authorization data.

7. The TPM MUST validate the command using the authorization data in the parentAuth parameter. The
parentRef parameter provides the identification of the parent.

8. After parameter validation the TPM creates b1 by decrypting inData using the key pointed to by
parentHandle.

9. The TPM MUST validate that b1 is a valid TCPA structure by verifying that the command has been
authorized to use the blob. This checks that 20B of the decrypted blob have the proper value, and
provides statistical proof that the blob was correctly decrypted.

10. The TPM replaces the authorization data for b1 with decryptAuth created above.

11. The TPM encrypts b1 using the appropriate mechanism for the type using the parentKeyHandle to
provide the key information.

12. The new blob is returned in outData when appropriate.

13. The TPM MUST enforce the destruction of both the parentAuthHandle and entityAuthHandle
sessions.

TCPA Main Specification Page 121

Version 1.1a 1 December 2001

5.6.2 TPM_ChangeAuthOwner
Start of informative comment:

The TPM_ChangeAuthOwner command allows the owner of an entity to change the authorization data for
the TPM Owner or the SRK.

This command requires authorization from the current TPM Owner to execute.

End of informative comment.
Type
TCPA protected capability; user must provide authorizations from the TPM Owner
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2 S 2 TCPA_PROTOCOL_ID protocolID The protocol in use.

5 20 3 S 20 TCPA_ENCAUTH newAuth
The encrypted new authorization data for the entity. The
encryption key is the shared secret from the OS-AP
protocol.

6 2 4 S 2 TCPA_ENTITY_TYPE entityType The type of entity to be modified

7 4 TCPA_AUTHHANDLE ownerAuthHandle The authorization handle used for the TPM Owner.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
ownerAuthHandle

9 1 4 H1 1 BOOL continueAuthSession Continue use flag the TPM ignores this value

10 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and ownerHandle.
HMAC key: tpmOwnerAuth.

TCPA Main Specification Page 122

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal TPM_ORD_ChangeAuthOwner

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
ownerAuthHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

6 20 TCPA_AUTHDATA resAuth
The authorization digest for the returned parameters and
ownerHandle. HMAC key: tpmOwnerAuth. This is the new
tpmOwnerAuth value if this command changed that value.

Descriptions

A TPM MUST support the TPM_PID_ADCP protocol.

In this capability, the SRK cannot be accessed as entityType TCPA_ET_KEY, since the SRK is not
wrapped by a parent key.

TPM_PID_ADCP protocol descriptions
The ownerAuthHandle session type MUST be TCPA_PID_OSAP.

TPM_PID_ADCP protocol actions
1. Verify that entityType is either TCPA_ET_OWNER or TCPA_ET_SRK, and return the error

TCPA_WRONG_ENTITYTYPE if not.

2. The ownerAuthHandle -> entityType MUST be TCPA_ET_OWNER.

3. Create s1 string by concatenating (ownerAuthHandle -> shared secret || authLastNonceEven)

4. Create x1 by performing a SHA1 hash of s1

5. Create decryptAuth by XOR of x1 and newAuth.

6. The TPM MUST enforce the destruction of the ownerAuthHandle session upon completion of this
command (successful or unsuccessful). This includes setting continueAuthSession to FALSE

7. Set the authorization data for the indicated entity to decryptAuth

TCPA Main Specification Page 123

Version 1.1a 1 December 2001

5.7 Asymmetric Authorization Change Protocol
Start of informative comment:
This asymmetric change protocol allows the entity owner to change entity authorization, under the
parent’s execution authorization, to a value of which the parent has no knowledge.

In contrast, the TPM_ChangeAuth command uses the parent entity authorization data to create the
shared secret that encrypts the new authorization data for an entity. This creates a situation where the
parent entity ALWAYS knows the authorization data for entities in the tree below the parent. There may
be instances where this knowledge is not a good policy.

This asymmetric change process requires two commands and the use of an authorization session.

End of informative comment.

Changing authorization data for the SRK SHALL involve authorization by the TPM Owner.

If SRKAuth is a well known value,

TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish SHOULD be used to change the
authorisation value of a child of the SRK, including the TPM identities.

All other entities SHALL involve authorization of the parent entity.

TCPA Main Specification Page 124

Version 1.1a 1 December 2001

5.7.1 TPM_ChangeAuthAsymStart
Start of informative comment:

The TPM_ChangeAuthAsymStart starts the process of changing authorization for an entity. It sets up an
OI-AP session that must be retained for use by its twin TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart creates a temporary asymmetric public key “tempkey” to provide
confidentiality for new authorization data to be sent to the TPM. TPM_ChangeAuthAsymStart certifies that
tempkey was generated by a genuine TPM, by generating a certifyInfo structure that is signed by a TPM
identity. The owner of that TPM identity must cooperate to produce this command, because
TPM_ChangeAuthAsymStart requires authorization to use that identity.

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose authorization is to
be changed. That owner uses certifyInfo and a TPM_IDENTITY_CREDENTIAL to verify that tempkey was
generated by a genuine TPM. This is done by verifying the TPM_IDENTITY_CREDENTIAL using the
public key of a CA, verifying the signature on the certifyInfo structure with the public key of the identity in
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value inside
certifyInfo. The owner uses tempkey to encrypt the desired new authorization data and inserts that
encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that only a TPM with a
specific identity can interpret the new authorization data.

End of informative comment.
Type
TCPA protected capability; user must provide authorization for the identity in idHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.

4 4 TCPA_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key

5 20 2s 20 TCPA_NONCE antiReplay The nonce to be inserted into the certifyInfo structure

6 <> 3S <> TCPA_KEY_PARMS tempKey Structure contains all parameters of ephemeral key.

7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for idHandle authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA idAuth The authorization digest for inputs and idHandle. HMAC
key: idKey.usageAuth.

TCPA Main Specification Page 125

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart

7 95 3S 95 TCPA_CERTIFY_INFO certifyInfo The certifyInfo structure that is to be signed.

8 4 4S 4 UINT32 sigSize The used size of the output area for the signature

9 <> 5S <> BYTE[] sig The signature of the certifyInfo parameter.

10 4 6s 4 TCPA_KEY_HANDLE ephHandle The keyHandle identifier to be used by
ChangeAuthAsymFinish for the ephemeral key

11 <> 7S <> TCPA_KEY tempKey Structure containing all parameters and public part of
ephemeral key. TCPA_KEY.encSize is set to 0.

12 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4 H1 1 BOOL continueAuthSessi
on Continue use flag, TRUE if handle is still active

14 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: idKey.usageAuth.

Actions
1. The TPM SHALL verify the authorization to use the TPM identity key held in idHandle. The TPM

MUST verify that the key is a TPM identity key.

2. The TPM SHALL validate the algorithm parameters for the key to create from the tempKey
parameter.

a. Recommended key type is RSA

b. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024

c. For other key types the minimum key size strength MUST be comparable to RSA 512

3. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The newly
created key is pointed to by ephHandle.

4. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TCPA_KEY -> encSize
MUST be 0.

5. The TPM SHALL fill in certifyInfo using k1 for the information. The certifyInfo -> data field is supplied
by the antiReplay.

6. The TPM then signs the certifyInfo parameter using the key pointed to by idHandle. The resulting
signed blob is returned in sig parameter

TCPA Main Specification Page 126

Version 1.1a 1 December 2001

Field Descriptions for certifyInfo parameter

Type Name Description

TCPA_VERSION Version TCPA version structure; section 4.5.

keyFlags Redirection This SHALL be set to FALSE

 Migratable This SHALL be set to FALSE

 Volatile This SHALL be set to TRUE

TCPA_AUTH_DATA
_USAGE

authDataUsage This SHALL be set to TPM_AUTH_NEVER

TCPA_KEY_USAGE KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRInfoSize This SHALL be set to 0

TCPA_DIGEST pubDigest This SHALL be the hash of the public key being
certified.

TCPA_NONCE Data This SHALL be set to antiReplay

TCPA_KEY_PARMS info This specifies the type of key and its parameters.

BOOL parentPCRStatus This SHALL be set to FALSE.

TCPA Main Specification Page 127

Version 1.1a 1 December 2001

5.7.2 TPM_ChangeAuthAsymFinish
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

The command requires the cooperation of the owner of the parent of the entity, since authorization must
be provided to use that parent entity. The command requires knowledge of the existing authorization
information and passes the new authorization information. The newAuthLink parameter proves
knowledge of existing authorization information and new authorization information. The new authorization
information “encNewAuth” is encrypted using the “tempKey” variable obtained via
TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the authorization of a child, but is prevented from
knowing the new authorization data for that child.

The changeProof parameter provides a proof that the new authorization value was properly inserted into
the entity. The inclusion of a nonce from the TPM provides an entropy source in the case where the
authorization value may be in itself be a low entropy value (hash of a password etc).

 End of informative comment.
Type
TCPA protected capability; caller must provide authorizations for the entity pointed to by parentRef and
blob.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 TCPA_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data

5 4 TCPA_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key

6 2 3S 2 TCPA_ENTITY_TYPE entityType The type of entity to be modified

7 20 4s 20 TCPA_HMAC newAuthLink HMAC calculation that links the old and new authorization
values together

8 4 5S 4 UINT32 newAuthSize Size of encNewAuth

9 <> 6S <> BYTE[] encNewAuth New authorization data encrypted with ephemeral key.

10 4 7S 4 UINT32 encDataSize The size of the inData parameter

11 <> 8S <> BYTE[] encData The encrypted entity that is to be modified.

12 4 TCPA_AUTHHANDLE authHandle Authorization for parent key.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

15 20 TCPA_AUTHDATA privAuth The authorization digest for inputs and parentHandle.
HMAC key: parentKey.usageAuth.

TCPA Main Specification Page 128

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 5s 20 TCPA_NONCE saltNonce A nonce value from the TPM RNG to add entropy to the
changeProof value

7 <> 6S <> TCPA_DIGEST changeProof Proof that authorization data has changed.

8 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: parentKey.usageAuth.

Description

If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM Owner
authorization.

Actions
1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in parentHandle.

2. The encData field MUST be the encData field from TCPA_STORED_DATA or TCPA_KEY.

3. The TPM SHALL create e1 by decrypting the entity held in the encData parameter.

4. The TPM SHALL create a1 by decrypting encNewAuth using the authHandle ->
TPM_KEY_AUTHCHANGE private key. a1 is a structure of type TCPA_CHANGEAUTH_VALIDATE.

5. The TPM SHALL create b1 by performing the following HMAC calculation: b1 = HMAC (a1 ->
newAuthSecret). The secret for this calculation is encData -> currentAuth. This means that b1 is a
value built from the current authorization value (encData -> currentAuth) and the new authorization
value (a1 -> newAuthSecret).

6. The TPM SHALL compare b1 with newAuthLink. The TPM SHALL indicate a failure if the values do
not match.

7. The TPM SHALL replace e1 -> authData with a1 -> newAuthSecret

8. The TPM SHALL encrypt e1 using the appropriate functions for the entity type. The key to encrypt
with is parentHandle.

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG.

10. The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with a1 -> n1) using a1 ->
newAuthSecret as the HMAC secret.

11. The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the authorization
session.

TCPA Main Specification Page 129

Version 1.1a 1 December 2001

5.8 Authorization Data
Start of informative comment:
The authorization data is a 160-bit field that the TPM stores in a “shielded location,” which is an area
where data is protected against interference and prying, independent of its form. The Owner has a copy
of the data and protects the data using whatever mechanism the Owner wishes to use. The authorization
data is a shared secret between the TPM and the Owner of the entity. There are no requirements as to
what the 160 bit of data are. The assumption is that the data is a SHA-1 hash of a password or other
data, but the data can be anything.

There will be a separate piece of authorization data for each entity. There is no requirement that each
authorization data blob must be unique.

The TPM treats the authorization data as shielded data, an approach that requires that only TPM-
protected capabilities access the authorization data. A further requirement is that the only use of the
authorization data within the TPM is in the authorization process. No other use is permissible.

The protection of the backup mechanism is a type of authorization.

End of informative comment.

The TPM MUST reserve 160 bits for the authorization data. The TPM treats the authorization data as a
blob. The TPM MUST keep the authorization data in a shielded location.

The TPM MUST enforce that the only usage in the TPM of the authorization data is to perform
authorizations.

TCPA Main Specification Page 130

Version 1.1a 1 December 2001

5.9 Nonces
Start of informative comment:
All of the authorization protocols require nonces to prevent replay and man-in-the-middle attacks. To
further strengthen the use of the nonces a rolling-nonce paradigm requires the use of new nonces for
each message and response.

The nonce values from the TPM must use the internal RNG. The nonce values from the requestor can
use any source that provides information to the requestor. The highest value is obtained when the
requestor also uses an RNG for the nonce values; however, there is no loss of security to the TPM if set
values are in use. The requestor loses some protection when he or she (or it) uses set values.

In all descriptions of nonce usage in this section all odd nonce values come from the challenger, all even
nonce values come from the TPM (0 is an even number for this definition).

The requestor is responsible for generating and sending the odd nonce value. The TPM may enforce that
the odd nonce value changes for each request.

The TPM is responsible for the even nonce values. The TPM changes the value of the even nonce on
each reply.

End of informative comment.

The requestor SHOULD provide a unique value in the odd nonce field of the authorization structure for
each request. The TPM MAY enforce the uniqueness of values from the requestor.

The TPM MUST supply a new nonce value for each reply. The nonce value MUST come from the internal
RNG. The TPM MUST enforce the validity of the returning nonce another command uses the
authorization session.

TCPA Main Specification Page 131

Version 1.1a 1 December 2001

5.10 Authorization Handle
Start of informative comment:
The TPM generates authorization handles to allow for the tracking of information regarding a specific
authorization invocation.

The TPM saves information specific to the authorization, such as the nonce values, ephemeral secrets
and type of authentication in use.

The TPM may create any internal representation of the handle that is appropriate for the TPM’s design.
The requestor always uses the handle in the authorization structure to indicate authorization structure in
use.

The TPM must support a minimum of two concurrent authorization handles. The use of these handles is
to allow the Owner to have an authorization active in addition to an active authorization for an entity.

To ensure garbage collection and the proper removal of security information, the requestor should
terminate all handles. Termination of the handle uses the continue-use flag to indicate to the TPM that the
handle should be terminated.

Termination of a handle instructs the TPM to perform garbage collection on all authorization data.
Garbage collection includes the deletion of the ephemeral secret.

End of informative comment.

The TPM MUST support authorization handles. The TPM MUST support a minimum of two concurrent
authorization handles.

The TPM MUST support authorization-handle termination. The termination includes secure deletion of all
authorization session information.

TCPA Main Specification Page 132

Version 1.1a 1 December 2001

5.11 TPM Ownership
Start of informative comment:
The Owner of the TPM has the right to perform special operations. The process of taking ownership is the
procedure whereby the Owner inserts a shared secret into the TPM. For all future operations, knowledge
of the shared secret is proof of Ownership. When the Owner wishes to perform one of the special
operations then the Owner must use the authorization protocol to prove knowledge of the shared secret.

The TPM default state is to have no Owner.

The difficulty with Ownership is inserting the shared secret in a secure manner. A design consideration is
that the taking of Ownership must be an operation that works securely over the network. The function
must provide confidentiality and integrity to the messages sent to the TPM.

The function to insert the Owner must provide the following:

• Confidentiality. The shared secret (or authorization data) must remain confidential to all
eavesdroppers that intercept any of the messages. The confidentiality comes from encrypting the
shared secret using the TPM PUBEK. The Owner trusts that only the TPM has the PRIVEK that can
decrypt the shared secret.

• Integrity. The TPM and the Owner must be able to determine the integrity of messages and
responses to the function. The integrity checking does not have to occur at the instant of receiving a
message. The Owner validates the integrity of the messages using the HMAC construct.

• Remoteness – the function must allow the Owner to take control across a network.

• Verifiability. The function allows the Owner to verify that he or she has truly taken control. The Owner
verifies that the secret was successfully installed by verifying the HMAC response. Additional
verification can occur by attempting to establish a Owner session.

The TPM_TakeOwnership function inserts the Owner-authorization data and creates a new Storage Root
Key (SRK). The TPM_TakeOwnership function fails if there is already an Owner set for the TPM.

After inserting the authorization data, the TPM_TakeOwnership function creates the SRK. The SRK (like
any other key) can be linked to a PCR.

To validate that the operation completes successfully, the TPM HMACs the response to the
TPM_TakeOwnership function.

End of informative comment.

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control protocol.

TCPA Main Specification Page 133

Version 1.1a 1 December 2001

5.11.1 TPM_TakeOwnership

Type
TCPA protected capability; user must encrypt the values using the PUBEK.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2S 2 TCPA_PROTOCOL_ID protocolID The ownership protocol in use.

5 4 3s 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4S <> BYTE[] encOwnerAuth The owner authorization data encrypted with PUBEK

7 4 5s 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 256 6S 256 BYTE[] encSrkAuth The SRK authorization data encrypted with PUBEK

9 <> 7S <> TCPA_KEY srkParams Structure containing all parameters of new SRK.
pubKey.keyLength & encSize are both 0

10 4 TCPA_AUTHHANDLE authHandle The authorization handle used for this command

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

11 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

12 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

13 20 TCPA_AUTHDATA ownerAuth
Authorization digest for input params. HMAC key: the
new ownerAuth value. See actions for validation
operations

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 <> 3S <> TCPA_KEY srkPub Structure containing all parameters of new SRK.
srkPub.encData is set to 0.

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

TCPA Main Specification Page 134

Version 1.1a 1 December 2001

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: the new ownerAuth value

Actions
The new owner MUST encrypt the Owner authorization data and the SRK authorization data using the
PUBEK. The endorsement key pair MUST be an RSA key so the encryption algorithm in use to encrypt
these secrets is RSA.

If the TPM has a current owner then the TPM upon receipt of this command SHALL return the error code
TCPA_OWNER_SET.

If the TPM has no current owner then the TPM upon receipt of this command SHALL:

1. If no EK is present the TPM MUST return TCPA_NO_ENDORSEMENT

2. If TCPA_PERSISTENT_FLAGS -> ownership is FALSE, the TPM SHALL abandon the process of
granting ownership and return the error TCPA_INSTALL_DISABLED

3. Verify that the authorization session is of type OI-AP.

4. Decrypt EncOwnerAuth using the PRIVEK to generate ProspectiveOwnerAuth.

5. Use the TCPA authorization protocol to verify that all input parameters tagged with AUTH have been
sent by an entity that knows ProspectiveOwnerAuth.

6. Store ProspectiveOwnerAuth as the Owner’s authorization data.

7. Generate a new SRK in accordance with the algorithm parameter. In version 1 of the specification,
algorithm MUST indicate a 2048 bit RSA key.

8. Verify that srkParams->keyUsage is TPM_KEY_STORAGE. If it is not, return
TCPA_BAD_PARAMETER"

9. Verify that srkParams->keyFlags->migratable is FALSE. If it is not, return TCPA_BAD_PARAMETER"

10. Decrypt EncSrkAuth using the PRIVEK and store the result as the SRK’s authorization data.

11. Obtain a TCPA_NONCE from the TPM’s Random Number Generator and store it as
TCPA_PERSISTENT_DATA -> tpmProof. tpmProof SHALL be stored in TCPA shielded locations,
only.

12. Return the public part of the SRK to the caller.

13. Calculate an authenticated response using the new authorization data

TCPA Main Specification Page 135

Version 1.1a 1 December 2001

6. Integrity Collection and Reporting

6.1 Introduction
Start of informative comment:

The TCPA Trusted Platform Support Services(TSS) provides mechanisms for cryptographically reporting
the current hardware and software configuration of a computing device to local and remote Challengers.
The TSS also provides a limited protected storage capability, which allows the Subsystem Owner to store
an acceptable platform configuration, biometric data or other data that is available early in boot. System
firmware or other software may use this storage capability to name Users qualified to log on, or
acceptable boot configurations. TCPA specification does not define how this storage facility should be
used.

The TSS also provides a facility whereby platform software or firmware may store secrets that are
accessible only when the platform is in a defined configuration. This mechanism is known as sealing. The
following sections describe and define the Trusted Platform Module (TPM)–protected operations that
support integrity collection and reporting. The usage required in a TCPA-compliant PC platform is
described in a separate document.

End of informative comment.

TCPA Main Specification Page 136

Version 1.1a 1 December 2001

6.2 Platform Configuration Registers

6.2.1 Format and Properties
A Platform Configuration Register (PCR) consists of a 160-bit field that holds a cumulatively updated
hash value and a 4-byte status field. The PCR data structure MUST be a TCPA-shielded location. PCRs
SHOULD be in volatile storage. The PCRs MUST be set to 0 before first use. This specification does not
mandate the internal storage format.

A TPM implementation MUST provide 16 or more independent PCRs. These PCRs are identified by index
and MUST be numbered from 0 (that is, PCR0 through PCR15 are required for TCPA compliance).
Vendors MAY implement more registers for general-purpose use. Extra registers MUST be numbered
contiguously from 16 up to max – 1, where max is the maximum offered by the TPM.

The TCPA-protected capabilities that expose and modify the PCRs use a 32-bit index, indicating the
maximum usable PCR index. However, TCPA reserves register indices 230 and higher for later versions of
the specification. A TPM implementation MUST NOT provide registers with indices greater than or equal
to 230. In this specification, the following terminology is used (although this internal format is not
mandated).

6.2.2 Initialization
PCRs and the protected capabilities that operate upon them MAY NOT be used until power-on self-test
(TPM POST) has completed. If TPM POST fails, the TPM_Extend operation will fail; and, of greater
importance, the TPM_Quote operation and TPM_Seal operations that respectively report and examine
the PCR contents MUST fail. At the successful completion of TPM POST, all PCRs MUST be set to 0.
Additionally, the UINT32 flags MUST be set to zero.

6.2.3 Authorized PCRs
A TPM MUST provide one Data Integrity Register (DIR). Implementations MAY provide more. These
registers MUST hold 160-bit values and MUST be held in TCPA-shielded locations. Further, these
registers MUST be non-volatile (values are maintained during the power-off state). A TPM implementation
need not provide the same number of DIRs as PCRs.

TCPA Main Specification Page 137

Version 1.1a 1 December 2001

6.3 Operations Supporting Integrity Collection and Reporting

6.3.1 TPM_Extend
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Extend.

4 4 TCPA_PCRINDEX pcrNum The PCR to be updated.

5 20 TCPA_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TCPA_PCRVALUE outDigest The PCR value after execution of the command.

Descriptions
TPM_Extend, TPM_SHA1CompleteExtend and TPM_Startup SHALL be the only commands that alter the
value of any PCRs.

When TCPA_PERSISTENT_FLAG -> disable is TRUE, TPM_Extend SHALL update the target PCR but
return zero instead of the new value of the PCR.

Actions
1. Create c1 by concatenating (PCRindex TCPA_PCRVALUE || inDigest). This takes the current PCR

value and concatenates the inDigest parameter.

2. Create h1 by performing a SHA1 digest of c1.

3. Store h1 as the new TCPA_PCRVALUE of PCRindex

4. If TCPA_PERSISTENT_FLAG -> disable is TRUE
a. Set outDigest to 20 bytes of 0x00

5. Else
a. Set outDigest to h1

TCPA Main Specification Page 138

Version 1.1a 1 December 2001

6.3.2 TPM_PcrRead
Start of informative comment:

The TPM_PcrRead operation provides non-cryptographic reporting of the contents of a named PCR.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_PcrRead.

4 4 TCPA_PCRINDEX pcrIndex Index of the PCR to be read

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TCPA_PCRVALUE outDigest The current contents of the named PCR

Actions
The TPM_PcrRead operation returns the current contents of the named register to the caller.

TCPA Main Specification Page 139

Version 1.1a 1 December 2001

6.3.3 TPM_Quote
Start of informative comment:

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is required for
operation. TPM_Quote uses a key to sign a statement that names the current value of a chosen PCR and
externally supplied data (which may be a nonce supplied by a Challenger).

The term "ExternalData" is used because an important use of TPM_Quote is to provide a digital signature
on arbitrary data, where the signature includes the PCR values of the platform at time of signing. Hence
the "ExternalData" is not just for anti-replay purposes, although it is (of course) used for that purpose in
an integrity challenge.

End of informative comment.

Type
TCPA protected capability; user must provide authorization to use the key indicated by the key1
parameter.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Quote.

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the
PCR values.

5 20 2S 20 TCPA_NONCE extrnalData 160 bits of externally supplied data (typically a nonce
provided by a server to prevent replay-attacks)

6 <> 3S <> TCPA_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA privAuth The authorization digest for inputs and keyHandle. HMAC
key: key -> usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUT1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Quote.

TCPA Main Specification Page 140

Version 1.1a 1 December 2001

4 <> 3S <> TCPA_PCR_COMPOSITE pcrData A structure containing the same indices as targetPCR,
plus the corresponding current PCR values.

5 4 4S 4 UINT32 sigSize The used size of the output area for the signature

6 <> 5S <> BYTE[] sig The signed data blob.

7 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: Key -> usageAuth.

Actions
The TPM MUST validate the authorization to use the key pointed to by keyHandle.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure
and that the targetPCR.pcrSelect parameter is non-zero. If targetPCR is incorrect or targetPCR.pcrSelect
is zero, the TPM MUST return the error code TCPA_NO_PCR_INFO.

If targetPCR is valid and the targetPCR.pcrSelect parameter value is non-zero, the TPM_Quote
operation SHALL:

1. Assemble a TCPA_PCR_COMPOSITE data structure in a TPM-shielded location. The PCR
indices in the TCPA_PCR_COMPOSITE structure SHALL be the same as those in the targetPCR
parameter. This TCPA_PCR_COMPOSITE data structure SHALL be returned by the call.

2. Create a TCPA_COMPOSITE_HASH structure as described in section 10.4.5, using the
TCPA_PCR_COMPOSITE structure as an input.

3. Incorporate the TCPA_COMPOSITE_HASH, information about the type of operation
(TPM_QUOTE), version information, and the ExternalData parameter into a
TCPA_QUOTE_INFO structure.

4. Sign the TCPA_QUOTE_INFO structure, using keyHandle as the signature key.

5. Return the resulting signature value in parameter sig.

TCPA Main Specification Page 141

Version 1.1a 1 December 2001

6.3.4 TPM_DirWriteAuth
Start of informative comment:

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs are non-
volatile memory registers held in a TCPA-shielded location. Owner authentication is required to authorize
this action. Version 1 requires only one DIR. If the DIR named does not exist, the TPM_DirRead
operation returns TCPA_BADINDEX.

End of informative comment.
Type
TCPA protected capability; the user must provide authorization from the TPM Owner to execute function.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth.

4 4 2S 4 TCPA_DIRINDEX dirIndex Index of the DIR

5 20 3S 20 TCPA_DIRVALUE newContents New value to be stored in named DIR

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for command.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

TCPA Main Specification Page 142

Version 1.1a 1 December 2001

Actions
1. Validate that authHandle contains a TPM Owner authorization to excute the TPM_DirWriteAuth

command

2. Validate that dirIndex points to a valid DIR on this TPM

3. Write newContents into the DIR pointed to by dirIndex

TCPA Main Specification Page 143

Version 1.1a 1 December 2001

6.3.5 TPM_DirRead
Start of informative comment:

The TPM_DirRead operation provides read access to the DIRs. No authentication is required to perform
this action because typically no cryptographically useful authorization data is available early in boot. TSS
implementors may choose to provide other means of authorizing this action. Version 1 requires only one
DIR. If the DIR named does not exist, the TPM_DirRead operation returns TCPA_BADINDEX.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_DirRead.

4 4 TCPA_DIRINDEX dirIndex Index of the DIR to be read

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TCPA_DIRVALUE dirContents The current contents of the named DIR

Actions
1. Validate that dirIndex points to a valid DIR on this TPM

2. Return the contents of the DIR in dirContents

TCPA Main Specification Page 144

Version 1.1a 1 December 2001

7. Protected Storage
Start of informative comment:

This section introduces the processes by which a TPM may act as the portal to confidential data stored
on arbitrary storage media.

A TPM is required to protect the keys that represent TPM identities, and keys that are released only when
the computing environment of the associated platform has a particular state. Given this capability, it is a
natural extension to enable a TPM to protect arbitrary data and arbitrary keys. Unfortunately, this
approach requires a potentially unbounded amount of storage within a TPM. The TCPA specification
therefore includes capabilities that enable a TPM to act as a portal to potentially unbounded amounts of
confidential data outside the TPM.

Storing data outside the TPM has the additional advantages of enabling easier migration of confidential
data from one platform to another and enabling recovery of confidential data in the event of platform
failure. These protected-storage capabilities are designed to enable the TPM to operate as a slave device
so as to avoid the cost complexity associated with a master device in a computing platform. These
capabilities also are designed to avoid the need for the TPM to manage the confidential data that is
stored outside the TPM. These design goals impose constraints on the nature of the protected-storage
capabilities.

The TCPA solution uses the TPM to generate “blobs” of secret data. Unspecified capabilities outside the
Subsystem manage protected storage and issue certificates or other indications about the purpose and
usefulness of data/keys held in blobs. Those unspecified capabilities issue commands to the TPM that
cause it to create blobs of data and to use and return the contents of such blobs. This unspecified
functionality is the manager of protected storage and uses the TPM as a specialized co-processor. The
protected-storage commands are chosen to prevent subversion of the data in protected storage. Hence a
rogue management function can disrupt protected storage but cannot subvert it.

A stored secret could be any of the following:

• Arbitrary data or a key. If a secret is arbitrary data, it can be exported from the TPM, and the TPM will
not perform operations using that data. If the secret is a key, it is available for use within the TPM,
and will never be exported from the TPM.

• An encryption (storage) key or a signing key. If a key is for encryption, it must not be used for signing,
and visa versa. Encryption keys are used only to provide confidentiality for blobs. Signature keys are
used for signing arbitrary data submitted by the entity authorized to use that key.

• The signature key of a TPM identity. Such a signature key will be used only for special signing
operations.

A stored secret has the following attributes:

• It may be capable of migration to another platform or it may be non-migratable. Keys that are
migratable cannot be considered unique to a particular platform. Non-migratable keys can be
considered to be unique to a particular platform.

• It may be generated inside the TPM or externally loaded. Externally loaded keys cannot be stored as
non-migratable keys, for obvious reasons.

• It may be bound to the TPM or bound to a sequence of integrity metrics. At times, data or a key is
required to be bound to a particular platform. At other times, it is required to be bound to a particular
computing environment within a platform.

• It may have access control. A secret may be open to all processes on a platform or it may not, with
varying degrees of control in between.

Some of these attributes are partitioned as separate commands, while others are partitioned as flags
within commands. All the commands cause the TPM to create a secret blob and return it to the caller. The
inverse commands cause the TPM to import a blob. Sometimes the TPM will then return the contents of

TCPA Main Specification Page 145

Version 1.1a 1 December 2001

the blob (data) to the caller, and sometimes the TPM loads the contents of the blob (a key) for use within
the TPM.

In all cases, the TPM must already contain the key that will be used to either encrypt or decrypt the blob.
This naturally leads to a tree of blobs, where intermediate nodes contain encryption (storage) keys that
are used to encrypt/decrypt child nodes. The root of the tree is the “Storage Root Key” (SRK) which is
generated inside the TPM and is non-migratable. Only leaf nodes can contain signing keys, because a
TPM will refuse to use a signing key to encrypt/decrypt child nodes. A TPM also will refuse to use a
migratable node as the parent of a non-migratable node. (This enables migration of the supposedly non-
migratable node.) On the other hand, a non-migratable node could be the parent of a migratable node,
with no ill effects.

The commands executed by the TPM are as follows:

• TSS_Bind: External data is encrypted under a parent key. (TPM_UnBind decrypts the blob using the
parent key and exports the data from the TPM.)

• TPM_Seal: External data is concatenated with a value of integrity metric sequence and encrypted
under a parent key. (TPM_Unseal decrypts the blob using the parent key and exports the plaintext
data if the current integrity metric sequence inside the TPM matches the value of integrity metric
sequence inside the blob). The sealer of the data may specify that no integrity metrics are required.

• TSS_WrapKey: An externally generated key is encrypted under a parent key. (TPM_LoadKey
decrypts the target blob using the parent key and loads the target key inside the TPM, for use by the
TPM.)

• TSS_WrapKeyToPcr: An externally generated key is concatenated with a value of integrity metric
sequence and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using the
parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity metric
sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

• TPM_CreateWrapKey: A key is generated inside the TPM, concatenated with a value of integrity
metric sequence, and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using
the parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity
metric sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

When a blob is loaded into a TPM, the TPM distinguishes between a data-bearing blob and a key-bearing
blob by inspecting the data structure inside the blob. Data-bearing blobs are constructed according to
PKCS #1. Key-bearing blobs are constructed using a TCPA-defined format. Each blob containing a key
includes the field KeyUsage, which indicates whether the key is to be used for encryption (storage) or
signing.

Command Usage with keys Comment
TSS_Bind N/A No key
TPM_Seal N/A No key
TSS_WrapKey Migratable, encrypt or sign Externally loaded
TSS_WrapKeyToPcr Migratable, encrypt or sign Externally loaded
TPM_CreateWrapKey Any

TCPA-protected storage uses asymmetric cryptography exclusively. One reason is that asymmetric
crypto is already required to support TPM identities, but asymmetric crypto is not specifically necessary
for any function. Another reason is that (in many, but not all, cases) operations to construct blobs can be
performed outside the TPM; only the recovery of information from blobs (using the private key) must be
done inside a TPM. This is possible because it is frequently true that all the necessary data to construct a
blob (including the public key) is available outside the TPM. One notable exception is the TPM_Seal
command, which must be performed inside a TPM because it requires reliable access to the Platform
Configuration Registers and/or TMPProof. Using asymmetric crypto for protected storage therefore
reduces the complexity of a TPM.

TCPA Main Specification Page 146

Version 1.1a 1 December 2001

Some other important characteristics of “protected storage” are

• Whenever a blob is created, the TPM includes random data to guard against plaintext attacks.

• Whenever a CreateWrapKey command creates a new key within the TPM, the blob that is produced
contains the private (signature) key and the TPM also exports the corresponding public (identity) key
as plaintext.

• Whenever a WrapXX command loads a new key into the TPM, only the private key (and its RSA
modulus) must be presented.

• Whenever the TPM_LoadKey command is asserted, the TPM imports a secret blob containing the
private (signature) key and the TPM also imports the corresponding public (identity) key as plaintext.
Active RSA keys inside the TPM are referenced by handle where loaded into the TPM. To minimize
key management burden inside the TPM, it is assumed “key slot” management is performed outside
the TPM.

• The integrity of the data from the TPM_UnBind command is not checked by the TPM. Hence
applications should use an “out of band” mechanism for verifying data integrity, if such verification is
necessary.

Each secret blob contains a field of 20 bytes that may be used for authorization data. For convenience,
the authorization field is the same size as the output of the SHA-1 hash algorithm. The authorization field
is merely stored inside a blob, and the protected-storage capabilities do not themselves interpret the field.

The authDataUsage field determines when authorization is required.

The integrity of data or keys recovered from blobs is ensured by an implicit, rather than explicit,
mechanism. Ordinarily, an integrity check is provided by appending a checksum to original plaintext data.
After decryption, the checksum is recomputed and compared with the checksum in the recovered data.
Such a checksum needs to be at least 16 bytes long so as to have the necessary statistical properties. In
the case of recovered blobs, the first 20 bytes of authorization data are sufficient to determine with high
probability that data has been successfully decrypted without error. If the decryption fails, or the
encrypted data contains errors, it is unlikely that the authorization data in the recovered blob will match
the submitted authorization data.

The TPM also can be commanded to provide evidence that a particular public key is associated with a
non-migratable private key (which was generated by the TPM and has never been released outside the
TPM). This is the TPM_CertifyKey. It enables a third party to use a public key to encrypt data that can be
recovered only using a protected-storage command. It also enables a third party to have confidence that
a signature key has been generated by the TPM and has never been released outside the TPM.

Migratory data may be copied to an arbitrary number of platforms, using the “migration” commands
provided. Non-migratory data may be moved to another platform only with the cooperation of a third party
(the manufacturer of the platform, or his representative), using the “maintenance” commands provided.

End of informative comment.

7.1 Introduction

7.1.1 Characteristics
Start of informative comment:

This section specifies how to use the TPM to provide secure storage for an unlimited number of private
keys or other data. Basically, this is done through the RSA key technology built into the TPM to encrypt
data and keys with a public key to which the TPM has access to its corresponding private key. The
resulting encrypted file, which contains header information in addition to the data or key, is called a blob,
and cannot be any bigger than key size used to encrypt it. The specification also shows how this is done,
so that private keys generated on the TPM can be stored outside the TPM (encrypted) in a way that
allows the TPM to use them later without ever exposing such keys in the clear outside the TPM.

TCPA Main Specification Page 147

Version 1.1a 1 December 2001

Padding and speed requirements make the TPM a very inefficient and inappropriate vehicle to do any
bulk encryption, but it can be used to securely store keys that would then be used by software to do bulk
encryption. There are a number of usage modules that imply requirements on the function of the TPM, as
follows:

• Signing with a private key by the TPM can be accomplished only by presentation of authorization data
to the TPM that is associated with that private key. A private key generated by a third party can be
linked to a specific TPM without exposing the private key to the Owner/User of the TPM, but only with
the consent of the User of the TPM.

• It MUST be possible to prove a specific public key is associated with a private key known only to a
TPM. It must be possible for the Owner of a key, with the cooperation of the Owner of the TPM to
migrate a migratable key from one platform to another without giving up control of the key to the TPM
Owner.

• It must not be possible for the Owner of a key, even with the cooperation of the Owner of the TPM to
migrate a non-migratable key from one platform to another. Since a key may be wrapped outside the
TPM, it is necessary that non-migratable keys always be generated inside the TPM. It must not be
possible for the Owner of a non-migratable asymmetric key, even with cooperation of the Owner of
the TPM, to decrypt the contents of an encrypted bundle encrypted with that non-migratable
asymmetric key.

• If a TPM is compromised, it must not compromise all TPMs.

• To facilitate application level exchange of symmetric keys, the symmetric keys are stored using
PKCS#1.

All this is generally accomplished as follows:

• Any data in protected storage is explicitly identified as migratable or non-migratable.

• Each TPM contains a SRK, generated by the TPM at the request of the Owner. Under that SRK are
two trees: one dealing with migratable data and the other dealing with non-migratable data.

• The non-migratable tree is directly below the SRK. The migration tree is directly below a “migration
root” key that is directly below the SRK. Each node in a tree provides confidentiality for the nodes
immediately below it. Obviously, all intermediate nodes in the trees must be encryption keys. Nodes
in the non-migratable tree must be generated by the TPM; otherwise, non-migratable nodes could be
exposed.

Finally, some observations:

• In the migration tree, only leaf nodes should be available for signing. This is because a signature
node (used outside the TPM for signing) should never be used for encryption and hence cannot be
used to encrypt other nodes. Hence, it must be a leaf.

• Similarly, in a non-migration tree, only leaf-nodes should be available for signing. Since non-
migratable nodes must not be migrated, they must never appear outside the TPM after being installed
in the TPM.

• Any non-leaf node in the non-migratable tree must be generated within the TPM and never exposed
outside the TPM. Any key (and hence every non-migratable key) generated in a TPM must be a
genuine key.

• Any migratable key can be migrated by anyone that owns any of its migratable ancestors. As a
result, in order to be sure that a migratable key cannot be migrated by anyone but the owner of that
key, the owner can always create the migratable key and store it with a non-migratable storage key,
thus guaranteeing the user has unique authority to authorize migration of that key.

End of informative comment.

TCPA Main Specification Page 148

Version 1.1a 1 December 2001

7.1.2 Key Storage
The number of asymmetric keys that are storable via a TPM SHOULD be limited only by the volume of
storage available to the platform.

The TPM SHALL ensure that the TCPA_PERSISTENT_FLAGS -> tmpProof field is only included on TPM
internally generated non-migratable keys. The rationale is that the tmpProof field is confidential
information and exposure of this information would lower the security of the system.

TCPA Main Specification Page 149

Version 1.1a 1 December 2001

7.2 Mandatory Functions
Start of informative comment:
Every TSS MUST support these functions; some must be TPM, and all may be TPM. They are derived
from three parameters:

1. Is the secret stored data or as a key?

2. Is the secret generated internally or externally?

3. Is the secret bound to just the platform or also to PCRs?

These parameters would ordinarily lead to eight functions, but because data is always assumed to be
generated externally, they yield to just six functions, as follows:

1. Data, generated externally, bound to PCRs: TPM_Seal command (TPM-protected capability). Inverse
command is TPM_Unseal.

2. Data, generated externally, bound to platform: TSS_Bind command (TSS). Inverse command is
TPM_UnBind.

3. Key, generated internally, bound to platform, bound to PCRs: TPM_CreateWrapKey command (TPM-
protected capability). Inverse command is TPM_LoadKey.

4. Key, generated externally, bound to PCRs: TSS_WrapKeyToPcr (TSS). Inverse command is
TPM_LoadKey.

5. Key, generated externally, bound to platform: TSS_WrapKey command (TSS). Inverse command is
TPM_LoadKey.

End of informative comment.

TCPA Main Specification Page 150

Version 1.1a 1 December 2001

7.2.1 TPM_Seal
Start of informative comment:

The SEAL operation allows software to explicitly state the future “trusted” configuration that the platform
must be in for the secret to be revealed. The SEAL operation also implicitly includes the relevant platform
configuration (PCR-values) when the SEAL operation was performed. The SEAL operation uses the
tpmProof value to BIND the blob to an individual TPM.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect when the SEAL
operation was performed is returned to the caller, as well as the secret data. This proof may, or may not,
be of interest. If the SEALed secret is used to authenticate the platform to a third party, a caller is
normally unconcerned about the state of the platform when the secret was SEALed, and the proof may be
of no interest. On the other hand, if the SEALed secret is used to authenticate a third party to the
platform, a caller is normally concerned about the state of the platform when the secret was SEALed.
Then the proof is of interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to prove that the
platform is a particular platform that is in a particular configuration), the only requirement is that that key
can be used only when the platform is in that future configuration. Then there is no interest in the platform
configuration when the secret key was SEALed. An example of this case is when SEAL is used to store a
network authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log on to the
platform. The OS uses a SEALED blob to store the encryption key for the user-database. However, the
nature of SEAL is that any SW stack can SEAL a blob for any other software stack. Hence the OS can
be attacked by a second OS replacing both the SEALED-blob encryption key, and the user database
itself, allowing untrusted parties access to the services of the OS. To thwart such attacks, SEALED blobs
include the past SW configuration. Hence, if the OS is concerned about such attacks, it may check to see
whether the past configuration is one that is known to be trusted.

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity with other
commands that require the encryption of more than one parameter, the string used for XOR encryption is
generated by concatenating a nonce (created during the OSAP session) with the session shared secret
and then hashing the result.

End of informative comment.
Type
TPM function; user must provide authorization to use the key pointed to by keyHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Seal.

4 4 TCPA_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal
operations.

5 20 2S 20 TCPA_ENCAUTH encAuth
The encrypted authorization data for the sealed data.
The encryption key is the shared secret from the OS-
AP protocol.

6 4 3s 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no
PCR registers in use

TCPA Main Specification Page 151

Version 1.1a 1 December 2001

7 <> 4S <> TCPA_PCR_INFO pcrInfo The PCR selection information

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[] inData The data to be sealed to the platform and any specified
PCRs

10 4 TCPA_AUTHHANDLE authHandle
The authorization handle used for keyHandle
authorization. Must be an OS_AP session for this
command.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

11 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored

13 20 TCPA_AUTHDATA pubAuth The authorization digest for inputs and keyHandle.
HMAC key: key.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Seal.

4 <> 3S 4 TCPA_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result
of the TPM_Seal operation.

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth.

Descriptions

The string used for XOR encryption of the command variable named encAuth SHALL be the digest
created by concatenating the shared session secret with the even numbered hash (generated by the
TPM) and hashing the concatenated value.

TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

Actions
1. If the inDataSize is 0 the TPM returns TCPA_BAD_PARAMETER

2. If the keyUsage field of the key indicated by keyHandle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE.

3. If the keyHandle points to a migratable key then the TPM MUST return the error code
TCPA_INVALID_KEY_USAGE.

TCPA Main Specification Page 152

Version 1.1a 1 December 2001

4. The TPM_Seal command MUST fill in a TPM_STORED_DATA structure. This structure includes a
properly filled in and encrypted TCPA_SEALED_DATA structure. The encryption key for the
operation is the key pointed to by the keyHandle parameter.

5. The TPM MUST set the TPM_STORED_DATA -> ver to the current TPM version.

6. Create an XOR-string by concatenating the shared session secret with the even numbered hash
(generated by the TPM) and hashing the concatenated value. Generate the plaintext authorization
data for the sealed data by XORing the XOR-string with the variable encAuth.

7. Set continueAuthSession to FALSE.

8. If the data is wrapped to PCR’s then
a. The TPM MUST check that the pcrInfo parameter is a consistent

TCPA_PCR_SELECTION structure. If not, the TPM MUST return the error code
TCPA_BADINDEX.

b. The TPM MUST compute a1 by creating TCPA_COMPOSITE_HASH value using pcrInfo
-> pcrSelection as the input to the algorithm in 10.4.5.

c. The TPM MUST set TPM_STORED_DATA -> sealInfo -> digestAtRelease to pcrInfo ->
digestAtRelease.

d. The TPM MUST set TPM_STORED_DATA -> SealInfo -> digestAtCreation to a1

e. The TPM MUST set TPM_STORED_DATA -> sealInfoSize to the size of the
TCPA_PCR_INFO structure.

9. Else
a. The TPM MUST set TPM_STORED_DATA -> sealInfoSize to 0.

10. The TPM provides no validation of the authorization data. Well known values like nulls are possible
and allowed.

11. The TPM must ensure that the PAYLOAD_TYPE byte of any sealed data is set to the proper value to
ensure that all encrypted elements can be distinguished from each other.

TCPA Main Specification Page 153

Version 1.1a 1 December 2001

7.2.2 TPM_Unseal
Start of informative comment:

The TPM_Unseal operation will reveal TPM_Sealed data only if it was encrypted on this platform and the
current configuration (as defined by the named PCR contents) is the one named as qualified to decrypt it.
Internally, TPM_Unseal accepts a data blob generated by a TPM_Seal operation. TPM_Unseal decrypts
the structure internally, checks the integrity of the resulting data, and checks that the PCR named has the
value named during TPM_Seal. Additionally, the caller must supply appropriate authorization data for
blob and for the key that was used to seal that data.

If the integrity, platform configuration and authorization checks succeed, the sealed data is returned to the
caller; otherwise, an error is generated.

End of informative comment.
Type
TPM protected capability; the user must provide authorizations to use the parent key pointed to by
parentHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 <> 2S <> TCPA_STORED_DATA inData The encrypted data generated by TPM_Seal.

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for parentHandle.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA parentAuth The authorization digest for inputs and parentHandle.
HMAC key: parentKey.usageAuth.

10 4 TCPA_AUTHHANDLE dataAuthHandle The authorization handle used to authorize inData.

 2 H2 20 TCPA_NONCE dataLastNonceEven Even nonce previously generated by TPM

11 20 3 H2 20 TCPA_NONCE datanonceOdd Nonce generated by system associated with
entityAuthHandle

12 1 4 H2 1 BOOL continueDataSession Continue usage flag for dataAuthHandle.

13 20 TCPA_AUTHDATA dataAuth The authorization digest for the encrypted entity. HMAC
key: entity.usageAuth.

TCPA Main Specification Page 154

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and
tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 3S 4 UINT32 sealedDataSize The used size of the output area for secret

5 <> 4S <> BYTE[] secret Decrypted data that had been sealed

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TCPA_NONCE dataNonceEven Even nonce newly generated by TPM.

 3 H2 20 TCPA_NONCE datanonceOdd Nonce generated by system associated with
dataAuthHandle

10 1 4 H2 1 BOOL continueDataSession Continue use flag, TRUE if handle is still active

11 20 TCPA_AUTHDATA dataAuth The authorization digest used for the dataAuth session.
HMAC key: entity.usageAuth.

Actions
1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle. On failure

the TPM MUST return TCPA_AUTHFAIL.

2. If the keyUsage field of the key indicated by parentHandle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE.

3. The TPM MUST check that the TCPA_KEY_FLAGS -> Migratable flag has the value FALSE in the
key indicated by parentKeyHandle. If not, the TPM MUST return the error code
TCPA_BAD_PARAMETER.

4. The TPM MUST create d1 by decrypting inData using the key pointed to by parentHandle. inData is a
TCPA_STORED_DATA structure and the encrypted area is pointed to by inData -> encData.

5. The TPM MUST check the integrity of the d1. The integrity check establishes that the d1 is a
consistent TPM_SEALED_DATA structure created with by a TPM_Seal operation on the same TPM
that is attempting the TPM_Unseal and that d1 has not been modified.

a. The TPM MUST check that the d1 -> tpmProof matches TCPA_PERSISTENT_DATA ->
tpmProof.

b. The TPM MUST calculate h1 by performing the same calculation that creates
TPM_SEALED_DATA -> storedDigest.

c. The TPM MUST validate that h1 and d1 -> storedDigest match.

d. The TPM MUST check the TCPA_PAYLOAD_TYPE value and ensure that it is not
decrypting a key.

TCPA Main Specification Page 155

Version 1.1a 1 December 2001

e. If d1 fails the integrity checks, then the operation MUST return the error
TCPA_NOTSEALED_BLOB.

6. The TPM must validate the authorization to use d1. The TPM MUST validate the authorization in
dataAuth matches the d1 -> authData parameter. The TPM MUST return TCPA_AUTHFAIL on a
mismatch.

7. If inData is wrapped to PCR’s then,
a. The TPM MUST ensure that the PCRs to which the blob was sealed are the same as the

PCRs’ values that exist at the time of TPM_Unseal.

b. The TPM MUST validate that inData -> pcrInfo is a valid TCPA_INFO_STRUCTURE.

c. The TPM will create h1 by computing a composite hash using the inData -> pcrInfo
parameter as the input to the composite hashing algorithm (See 10.4.5).

d. The TPM MUST compare h1 with inData -> pcrInfo -> digestAtRelease. On a mismatch
the TPM MUST return TCPA_WRONGPCRVALUE.

8. else

a. The TPM does not need to check PCR configuration.

TCPA Main Specification Page 156

Version 1.1a 1 December 2001

7.2.3 TSS_Bind
Start of informative comment:

The TSS_Bind command allows an entity outside of the TPM to create a blob that can be operated on by
TPM_Unbind.

The TSS_Bind command is responsible for creating the blob to be encrypted in a manner that is
decryptable by TPM_Unbind.

To bind data that is larger than the RSA public key modulus it is the responsibility of the caller to perform
the blocking and subsequent combination of data.

The TSS_Bind command should perform validations that the public key presented to it is from a valid
TPM.

End of informative comment.

TCPA Main Specification Page 157

Version 1.1a 1 December 2001

7.2.4 TPM_UnBind
Start of informative comment:

TPM_UnBind takes the data blob that is the result of a TSS_Bind command and decrypts it for export to
the User. The caller must authorize the use of the key that will decrypt the incoming blob.

UnBInd operates on a block-by-block basis, and has no notion of any relation between one block and
another.

End of informative comment.
Type
TCPA protected capability; the user must provide authorization to use the key specified in the keyHandle
parameter.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_UnBind.

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform
UnBind operations.

5 4 2S 4 UINT32 inDataSize The size of the input blob

6 <> 3S <> BYTE[] inData Encrypted blob to be decrypted

7 4 TCPA_AUTHHANDLE authHandle The handle used for keyHandle authorization

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the inputs and
use of keyHandle. HMAC key: key.usageAuth.

TCPA Main Specification Page 158

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_UnBind

4 4 3S 4 UINT32 outDataSize The length of the returned decrypted data

5 <> 4S <> BYTE[] outData The resulting decrypted data.

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth.

Description

UnBind SHALL operate on a single block only.

Actions
The TPM SHALL perform the following:

1. If the inDataSize is 0 the TPM returns TCPA_BAD_PARAMETER

2. Validate the authorization to use the key pointed to by keyHandle

3. If the keyUsage field of the key referenced by keyHandle does not have the value TPM_KEY_BIND
or TPM_KEY_LEGACY, the TPM must return the error code TCPA_INVALID_KEYUSAGE

4. Decrypt the inData using the key pointed to by keyHandle

5. if (keyHandle -> encScheme does not equal TCPA_ES_RSAESOAEP_SHA1_MGF1) and
(keyHandle -> keyUsage equals TPM_KEY_LEGACY),

a. The payload does not have TCPA specific markers to validate, so no consistency check
can be performed.

b. Set the output parameter outData to the value of the decrypted value of inData. (Padding
associated with the encryption wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the
decryption process.

d. Return the output parameters.

6. else
a. Interpret the decrypted data under the assumption that it is a TCPA_BOUND_DATA

structure, and validate that the payload type is TCPA_PT_BIND

b. Set the output parameter outData to the value of TCPA_BOUND_DATA -> payloadData.
(Other parameters of TCPA_BOUND_DATA SHALL NOT be returned. Padding
associated with the encryption wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the
decryption process and the interpretation of TCPA_BOUND_DATA.

TCPA Main Specification Page 159

Version 1.1a 1 December 2001

d. Return the output parameters.

TCPA Main Specification Page 160

Version 1.1a 1 December 2001

7.2.5 TPM_CreateWrapKey
Start of informative comment:

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for asymmetric
keys.

The newly created key can be locked to a specific PCR value by specifying a set of PCR registers.

End of informative comment.
Type
TCPA protected capability; the user must provide authorization to use the key indicated by parentHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TCPA_ENCAUTH dataUsageAuth Encrypted usage authorization data for the sealed data.

6 20 3S 20 TCPA_ENCAUTH dataMigrationAuth Encrypted migration authorization data for the sealed
data.

7 <> 4S <> TCPA_KEY keyInfo Information about key to be created, pubkey.keyLength
and keyInfo.encData elements are 0.

8 4 TCPA_AUTHHANDLE authHandle The authorization handle used for parent key
authorization. Must be an OS_AP session.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

9 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

10 1 4 H1 1 BOOL continueAuthSession Ignored

11 20 TCPA_AUTHDATA pubAuth
The authorization digest that authorizes the use of the
public key in parentHandle. HMAC key:
parentKey.usageAuth.

TCPA Main Specification Page 161

Version 1.1a 1 December 2001

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 <> 4S <> TCPA_KEY wrappedKey The TCPA_KEY structure which includes the public and
encrypted private key

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: parentKey.usageAuth.

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller combines
the two nonces in use by the OSAP session with the session shared secret.

DataUsageAuth is XOR'd with the SHA-1 hash of the concatenation of the OSAP session shared secret
with the even numbered nonce generated by the TPM (authLastNonceEven). MigrationAuth is XOR'd with
the SHA-1 hash of the concatenation of the OSAP session shared secret with the odd numbered nonce
generated by the caller (nonceOdd).

Actions
The TPM SHALL do the following:

1. Validate the authorization to use the key pointed to by parentHandle. Return TCPA_AUTHFAIL on
any error.

2. Validate the session type for parentHandle is OS-AP.

3. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

4. If parentHandle -> keyFlag -> migratable is TRUE and keyInfo -> keyFlag -> migratable is FALSE
then return TCPA_INVALID_KEYUSAGE

5. Validate key parameters

a. keyInfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or
TPM_KEY_AUTHCHANGE. If it is, return TCPA_BAD_PARAMETER.

b. If keyInfo -> keyUsage equals TPM_KEY_STORAGE
i. algorithmID MUST be TCPA_ALG_RSA

ii. encScheme MUST be TCPA_ES_RSAESOAEP_SHA1_MGF1

iii. sigScheme MUST be TCPA_SS_NONE

iv. key size MUST be 2048

6. Validate all keyInfo parameters, any errors return TCPA_BAD_PARAMETER

7. Create the two XOR patterns by using the session key and the nonces for this transaction

TCPA Main Specification Page 162

Version 1.1a 1 December 2001

8. Set continueAuthSession to FALSE

9. Decrypt the DataUsageAuth and DataMigrationAuth parameters

10. Generate asymmetric key according to algorithm information in keyInfo

11. Fill in the wrappedKey structure with information from the newly generated key.

a. Set the auth member of this structure to the decrypted values of DataUsageAuth.

b. The TPM MUST set the wrappedKey -> ver to the current TPM version.

c. If the KeyFlags -> migratable bit is set to 1, the wrappedKey -> encData -> migrationAuth
SHALL contain the decrypted value from DataMigrationAuth.

d. If the KeyFlags -> migratable bit is set to 0, and wrappedKey -> encData ->
migrationAuth SHALL be set to the value tpmProof.

12. Encrypt the private portions of the wrappedKey structure using the key in keyHandle

13. Return the newly generated key in the wrappedKey parameter

TCPA Main Specification Page 163

Version 1.1a 1 December 2001

7.2.6 TSS_WrapKey
Start of informative comment:

The TSS_WrapKey command creates a migratable blob for a key that has been presented externally.
The creator of the key can prevent migration by the User by wrapping it with a non-migratable storage key
and loading random data for the MigrationAuthorizationData. However, the internal bit will still be set as
migratable. This allows delegation of a key without giving the delegator the right to further delegate.
Because the key was created elsewhere, there is no need to return the PubKey of the key being
wrapped, and because a public key is used for the wrapping, external to the TPM, there is no need for
authorization data for the wrapping key to be passed.

End of informative comment.
Actions
The TSS SHOULD do the following:
1. If the keyUsage field of PubKey does not have the value TPM_KEY_STORAGE, the TSS must return

the error code TCPA_INVALID_KEYUSAGE

2. Validate the TCPA_STORE_ASYMKEY structure

3. Fill in the TCPA_STORE_ASYMKEY structure with the authorization and usage parameters

4. Set KeyFlags.migratable to 1

5. Set all other KeyFlags members to the values in KeyFlags parameter

6. Set TCPA_STORE_ASYMKEY.pcrDigest to 20 bytes of value 0xFF.

7. Encrypt the TCPA_STORE_ASYMKEY structure using the pubkey parameter

8. Return the entire TCPA_KEY structure

TCPA Main Specification Page 164

Version 1.1a 1 December 2001

7.2.7 TSS_WrapKeyToPcr
Start of informative comment:

The TSS_WrapKeyToPcr command is similar to the TSS_WrapKey command except that it has an
additional requirement for authorization of use: a PCR value must match the value given at blob-creation
time. Thus, TSS_WrapKeyToPcr creates a migratable blob for a key that has been presented externally.
Both authorization data and a given PCR value are set as part of the authorization requirement.

End of informative comment.
Actions
The TSS SHOULD do the following:
1. If the keyUsage field of PubKey does not have the value TPM_KEY_STORAGE, the TSS must return

the error code TCPA_INVALID_KEYUSAGE

2. Validate the TCPA_STORE_ASYMKEY structure

3. Fill in the TCPA_STORE_ASYMKEY structure with the authorization and usage parameters

4. Set KeyFlags.migratable to 1

5. Set all other KeyFlags members to the values in KeyFlags parameter

6. Set TCPA_STORE_ASYMKEY.pcrDigest to TargetPCRHash

7. Encrypt the TCPA_STORE_ASYMKEY structure using the pubkey parameter

8. Return the entire TCPA_KEY structure

TCPA Main Specification Page 165

Version 1.1a 1 December 2001

7.2.8 TPM_LoadKey
Start of informative comment:

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or perform any
other action, it needs to be present in the TPM. The TPM_LoadKey function loads the key into the TPM
for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. The
assumption is that the handle may change due to key management operations. It is the responsibility of
upper level software to maintain the mapping between handle and any label used by external software.

The load command must maintain a record of whether any previous key in the key hierarchy was bound
to a PCR using parentPCRStatus.

This command has the responsibility of enforcing restrictions on the use of keys. For example, when
attempting to load a STORAGE key it will be checked for the restrictions on a storage key (2048 size
etc.).

The flag parentPCRStatus enables the possibility of checking that a platform passed through some
particular state or states before finishing in the current state. A grandparent key could be linked to state-1,
a parent key could linked to state-2, and a child key could be linked to state-3, for example. The use of
the child key then indicates that the platform passed through states 1 and 2 and is currently in state 3, in
this example. The issue of TPM_Startup is with stType == TCPA_ST_CLEAR is an indication that the
platform has been reset, so the platform has not passed through the previous states. Hence keys with
parentPCRStatus==TRUE must be unloaded if TPM_Startup is issued with stType == TCPA_ST_CLEAR.

If a TCPA_KEY structure has been decrypted AND the integrity test using "pubDataDigest" has passed
AND the key is non-migratory, the key must have been created by the TPM. So there is every reason to
believe that the key poses no security threat to the TPM. While there is no known attack from a rogue
migratory key, there is a desire to verify that a loaded migratory key is a real key, arising from a general
sense of unease about execution of arbitrary data as a key. Ideally a consistency check would consist of
an encrypt/decrypt cycle, but this may be expensive. For RSA keys, it is therefore suggested that the
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, and
checking that there is no remainder.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the parent key pointed to by
parentHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadKey.

4 4 TCPA_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TCPA_KEY inKey Incoming key structure, both encrypted private and clear
public portions.

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for parentHandle
authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

TCPA Main Specification Page 166

Version 1.1a 1 December 2001

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA parentAuth The authorization digest for inputs and parentHandle.
HMAC key: parentKey.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey

4 4 3s 4 TCPA_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: parentKey.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate the authorization to use the key in parentHandle

2. If the keyUsage field of the key referenced by parent handle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE

3. Decrypt the inKey -> privkey to obtain TCPA_STORE_ASYMKEY structure using the key in
parentHandle

4. Validate the integrity of inKey and decrypted TCPA_STORE_ASYMKEY

a. Reproduce inKey -> TCPA_STORE_ASYMKEY -> pubDataDigest using the fields of
inKey, and check that the reproduced value is the same as pubDataDigest

5. Validate the consistency of the key and it’s key usage.

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the
public and private components of the asymmetric key pair. If inKey -> keyFlags ->
migratable is FALSE, the TPM MAY verify consistency of the public and private
components of the asymmetric key pair. The consistency of an RSA key pair MAY be
verified by dividing the supposed (P*Q) product by a supposed prime and checking that
there is no remainder..

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable is
FALSE. If it is not, return TCPA_BAD_PARAMETER

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TCPA_BAD_PARAMETER

d. If inKey -> keyFlags -> migratable equals 0 then verify that TCPA_STORE_ASYMKEY ->
migration equals TCPA_PERSISTENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes according to section 4.10.1

TCPA Main Specification Page 167

Version 1.1a 1 December 2001

f. If inKey -> keyUsage is TPM_KEY_STORAGE
i. algorithmID MUST be TCPA_ALG_RSA

ii. Key size MUST be 2048

iii. sigScheme MUST be TCPA_SS_NONE

g. If inKey -> keyUsage is TPM_KEY_IDENTITY
i. algorithmID MUST be TCPA_ALG_RSA

ii. Key size MUST be 2048

iii. encScheme MUST be TCPA_ES_NONE

h. If the decrypted InKey ->pcrInfo is not NULL,
i. The TPM validates that inKey -> pcrInfo -> pcrSelection points to at least one

PCR register. If no PCR registers are selected the TPM MUST NOT perform any
further checks regarding PCR registers with the loaded key.

ii. The TPM MUST store the list of active PCR registers in a manner that allows the
TPM to access this list whenever the loaded key is used for any function.

iii. Every time before the loaded key is used, the inkey -> PCRInfo structure from
TPM_LoadKey MUST be used to verify that the current PCR state is correct. The
TPM MUST ensure that the PCRs to which the key was sealed are the same as
the PCRs' values that exist at the time of key usage. To do this, the TPM will
compute a TCPA_COMPOSITE_HASH value using the inkey -> pcrInfo ->
pcrSelection -> pcrSelect parameter as the input to the composite hashing
algorithm (See 10.4.5).

iv. If the resulting composite hash matches the inkey -> PCRInfo -> digestAtRelease
parameter, the TPM is permitted to use the key. Otherwise, if the composite
hashes do not match, the TPM is NOT permitted to use the key in the current
PCR state, and the TPM MUST return TCPA_WRONGPCRVAL.

i. If the decrypted inKey -> pcrInfo is NULL,
i. The TPM MUST set the internal indicator to indicate that the key is not using any

PCR registers.

6. Perform any processing necessary to make TCPA_STORE_ASYMKEY key available for operations

7. Load key and key information into internal memory of the TPM. If insufficient memory exists return
error TCPA_NOSPACE.

8. Assign inKeyHandle according to internal TPM rules.

9. Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

10. If ParentHandle indicates it is using PCR registers then set inKeyHandle -> parentPCRStatus to
TRUE. The TPM creates an indicator of PCR usage in step 5.h.ii above. This indicator is internal to
the TPM but MUST accurately reflect the sealing of a key to a PCR register.

TCPA Main Specification Page 168

Version 1.1a 1 December 2001

7.2.9 TPM_EvictKey

Type
TPM command. Non-authorized.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_EvictKey

4 4 TCPA_KEY_HANDLE evictHandle The handle of the key to be evicted.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
The TPM will invalidate the key stored in the specified handle and return the space to the available
internal pool for subsequent query by TPM_GetCapability and usage by TPM_LoadKey. If the specified
key handle does not correspond to a valid key, an error will be returned.

TCPA Main Specification Page 169

Version 1.1a 1 December 2001

7.2.10 TPM_GetPubKey
Start of informative comment:

The owner of a key may wish to obtain the public key value from a loaded key. This information may have
privacy concerns so the command must have authorization from the key owner.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the key pointed to by keyHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.

4 4 TCPA_KEY_HANDLE keyHandle TPM handle of key.

5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TCPA_AUTHDATA keyAuth The authorization digest for inputs and keyHandle. HMAC
key: key.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.

4 <> 3S <> TCPA_PUBKEY pubKey Public portion of key in keyHandle.

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate the authorization to use the key in keyHandle

2. Create a TCPA_PUBKEY structure and return

TCPA Main Specification Page 170

Version 1.1a 1 December 2001

7.2.11 TPM_CreateMigrationBlob
Start of informative comment:

The TPM_CreateMigrationBlob command implements the first step in the process of moving a migratable
key to a new parent or platform. Execution of this command requires knowledge of the migrationAuth field
of the key to be migrated.

Migrate mode is generally used to migrate keys from one TPM to another for backup, upgrade or to clone
a key on another platform. To do this, the TPM needs to create a data blob that another TPM can deal
with. This is done by loading in a backup public key that will be used by the TPM to create a new data
blob for a migratable key.

The TPM Owner does the selection and authorization of migration public keys at any time prior to the
execution of TPM_CreateMigrationBlob by performing the TPM_AuthorizeMigrationKey command.

IReWrap mode is used to directly move the key to a new parent (either on this platform or another). The
TPM simply re-encrypts the key using a new parent, and outputs a normal encrypted element that can be
subsequently used by a TPM_LoadKey command.

TPM_CreateMigrationBlob implicitly cannot be used to migrate a non-migratory key. No explicit check is
required. Only the TPM knows tpmProof. Therefore it is impossible for the caller to submit an
authorization value equal to tpmProof and migrate a non-migratory key.

End of informative comment.
Type
TCPA protected capability; user must provide authorizations for the entity pointed to by parentHandle and
inData.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 TCPA_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TCPA_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP

6 <> 3S <> TCPA_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization digest.

7 4 4 S 4 UINT32 encDataSize The size of the encData parameter

8 <> 5 S <> BYTE[] encData The encrypted entity that is to be modified.

9 4 TCPA_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.

 2H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

10 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
parentAuthHandle

11 1 4 H1 1 BOOL continueAuthSession Continue use flag for parent session

12 20 20 TCPA_AUTHDATA parentAuth The authorization digest for inputs and
parentHandle. HMAC key: parentKey.usageAuth.

TCPA Main Specification Page 171

Version 1.1a 1 December 2001

13 4 TCPA_AUTHHANDLE entityAuthHandle The authorization handle used for the encrypted
entity.

 2H2 20 TCPA_NONCE entitylastNonceEven Even nonce previously generated by TPM

14 20 3 H2 20 TCPA_NONCE entitynonceOdd Nonce generated by system associated with
entityAuthHandle

15 1 4 H2 1 BOOL continueEntitySession Continue use flag for entity session

16 20 TCPA_AUTHDATA entityAuth The authorization digest for the inputs and encrypted
entity. HMAC key: entity.migrationAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize
and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 3s 4 UINT32 randomSize The used size of the output area for random

5 <> 4s <> BYTE[] random String used for xor encryption

6 4 5s 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[] outData The modified, encrypted entity.

8 20 3 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover
outputs

 4 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
parentAuthHandle

9 1 5 H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TCPA_AUTHDATA resAuth
The authorization digest for the returned parameters
and parentHandle. HMAC key:
parentKey.usageAuth.

11 20 3 H2 20 TCPA_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 4 H2 20 TCPA_NONCE entitynonceOdd Nonce generated by system associated with
entityAuthHandle

12 1 5 H2 1 BOOL entityContinueAuthSessio
n Continue use flag for entity session

13 20 TCPA_AUTHDATA entityAuth The authorization digest for the returned parameters
and entity. HMAC key: entity.migrationAuth.

Description

The key that wraps the migration key MUST be a 2048 bit RSA key or higher.

The TPM does not check the PCR values when migrating values locked to a PCR.

The second authorisation session (using entityAuth) MUST be OIAP because OSAP does not have a
suitable entityType

Actions

TCPA Main Specification Page 172

Version 1.1a 1 December 2001

1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. Create d1 by decrypting encData using the key pointed to by parentHandle.

3. Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> migrationAuth
as the secret.

4. Verify that the digest within migrationKeyAuth is legal for this TPM and public key

5. If migrationType == TCPA_MS_MIGRATE the TPM SHALL perform the following actions:
a. Build a TCPA_STORE_PRIVKEY structure from the d1 key. This privKey element should be

132 bytes long for a 2K RSA key.

b. Create k1 and k2 by splitting the privKey element created in step a into 2 parts. k1 is the first
20 bytes of privKey, k2 contains the remainder of privKey.

c. Build m by filling in the usageAuth and pubDataDigest fields within a
TCPA_MIGRATE_ASYMKEY structure using data from the d1 key. The privKey field should
be set to k2 (step g) and payload should be set to TCPA_PT_MIGRATE.

d. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP
encoding of m using OAEP parameters of

i. m = TCPA_MIGRATE_ASYMKEY structure (step c)

ii. pHash = d1->migrationAuth

iii. seed = s1 = k1 (step g)

e. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. Return
r1 in the Random parameter.

f. Create x1 by XOR of o1 with r1

g. Copy r1 into the output field “random”.

h. Encrypt x1 with the migration public key included in migrationKeyAuth.

6. If migrationType == TCPA_MS_REWRAP the TPM SHALL perform the following actions:
a. Rewrap the key using the public key in migrationKeyAuth, keeping the existing contents of

that key.

b. If randomSize is 0 the TPM returns TCPA_BAD_PARAMETER.

TCPA Main Specification Page 173

Version 1.1a 1 December 2001

7.2.12 TPM_ConvertMigrationBlob
Start of informative comment:

This command takes a migration blob and creates a normal wrapped blob. The migrated blob must be
loaded into the TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public keys is not
specified by TCPA because they are not security sensitive. Migration of the associated public keys may
be specified in a platform specific specification. A TCPA_KEY structure must be recreated before the
migrated key can be used by the target TPM in a LoadKey command.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the key in parentHandle
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.

4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 4 2S 4 UINT32 inDataSize Size of inData

6 <> 3S <> BYTE [] inData The XOR’d and encrypted key

7 4 4S 4 UINT32 randomSize Size of random

8 <> 5S <> BYTE [] random Random value used to hide key data.

9 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

10 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

12 20 TCPA_AUTHDATA parentAuth
The authorization digest that authorizes the inputs and
the migration of the key in parentHandle. HMAC key:
parentKey.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

TCPA Main Specification Page 174

Version 1.1a 1 December 2001

5 <> 4S <> BYTE[] outData The encrypted private key that can be loaded with
TPM_LoadKey

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: parentKey.usageAuth

Action
The TPM SHALL perform the following:

1. Validate the authorization to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE

3. Create d1 by decrypting the inData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1, seed and pHash by OAEP decoding o1

6. Verify that the payload type is TCPA_PT_MIGRATE

7. Create k1 by combining seed and the TCPA_MIGRATE_ASYMKEY.data field

8. Create d2 a TCPA_STORE_ASYMKEY structure by inserting pHash as the migration authorization
field. Set the TCPA_STORE_ASYMKEY -> privKey field to k1

9. Create outData using the key in parentHandle to perform the encryption

TCPA Main Specification Page 175

Version 1.1a 1 December 2001

7.2.13 TPM_AuthorizeMigrationKey
Start of informative comment:

This command creates an authorization blob, to allow the TPM owner to specify which migration facility
they will use and allow users to migrate information without further involvement with the TPM owner.

The TPM does no validation of the migration key. It is the responsibility of the TPM Owner to determine
the validity of the key and whether it is appropriate for use by the TPM.

End of informative comment.
Type
TCPA protected capability; user must provide authorization from the TPM Owner
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed at
TPM_ORD_AuthorizeMigrationKey

4 2 2s 2 TCPA_MIGRATE_SCHEME migrateScheme Type of migration operation that is to be permitted for
this key.

4 <> 3S <> TCPA_PUBKEY migrationKey The public key to be authorized.

5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

6 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and
tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed at
TPM_ORD_AuthorizeMigrationKey

4 <> 3S <> TCPA_MIGRATIONKEYAUTH outData Returned public key and authorization digest.

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

TCPA Main Specification Page 176

Version 1.1a 1 December 2001

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Action
The TPM SHALL perform the following:

1. Validate the authorization to use the TPM by the TPM Owner

2. Create a f1 a TCPA_MIGRATIONKEYAUTH structure

3. Set f1 -> migrationKey to the input migrationKey

4. Set f1 -> migrationScheme to the input migrationScheme

5. Create v1 by concatenating (migrationKey || migrationScheme || TCPA_PERSISTENT_DATA ->
tpmProof)

6. Create h1 by performing a SHA1 hash of v1

7. Set f1 -> digest to h1

8. Return f1 as outData

TCPA Main Specification Page 177

Version 1.1a 1 December 2001

7.3 TPM Optional Functions: Maintenance
Start of informative comment:
Maintenance is different from backup/migration, because maintenance provides for the migration of both
migratory and non-migratory data. Maintenance is an optional TPM function, but if a TPM enables
maintenance, the maintenance capabilities in this specification are mandatory – no other migration
capabilities shall be used. Maintenance necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its representative
needs to replace a Subsystem containing a TPM. Some manufacturers consider it a requirement that
there be a means of doing this replacement without the loss of the non-migratable keys held by the
original TPM.

The owner and users of TCPA platforms need assurance that the data within protected storage is
adequately protected against interception by third parties or the manufacturer.

This process MUST only be performed between two platforms of the same manufacturer and model. If the
maintenance feature is supported, this section defines the required functions defined at a high level. The
final function definitions and entire maintenance process is left to the manufacturer to define within the
constraints of these high level functions.

Any maintenance process must have certain properties. Specifically, any migration to a replacement
Subsystem must require collaboration between the Owner of the existing Subsystem and the
manufacturer of the existing Subsystem. Further, the procedure must have adequate safeguards to
prevent a non-migratable key being transferred to multiple Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive
enable the transfer of all Protected Storage data from a Subsystem containing a first TPM (TPM1) to a
Subsystem containing a second TPM (TPM2):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture time.

The Owner of TPM1 uses TPM_CreateMaintenanceArchive to create a maintenance archive that enables
the migration of all data held in Protected Storage by TPM1. The Owner of TPM1 must provide his or her
authorization to the Subsystem. The TPM then creates the TCPA_MIGRATE_ASYMKEY structure and
follows the process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM1 data.

The additional random data provides a means to assure that a maintenance process cannot subvert
archive data and hide such subversion.

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on the TPM
Owners authorization data.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies itself that the
data bundle represents data from that Subsystem manufactured by that manufacturer. Then the
manufacturer checks the endorsement certificate of TPM2 and verifies that it represents a platform to
which data from TPM1 may be moved.

The manufacturer dispatches two messages.

The first message is made available to CAs, and is a revocation of the TPM1 endorsement certificate.

The second message is sent to the Owner of TPM2, which will communicate the SRK, tpmProof and the
manufacturers permission to install the maintenance blob only on TPM2

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM2, and overwrite the
existing TPM2-SRK and TPM2-tpmProof in TPM2. TPM2 overwrites TPM2-SRK with TPM1-SRK, and
overwrites TPM2-tpmProof with TPM1-tpmProof.

TCPA Main Specification Page 178

Version 1.1a 1 December 2001

Note that the command TPM_KillMaintenanceFeature prevents the operation of
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner to block
maintenance (and hence the migration of non-migratory data) either to or from a TPM.

It is required that a manufacturer takes steps that prevent further access of migrated data by TPM1. This
may be achieved by deleting the existing Owner from TPM1, for example.

For the manufacturer to validate that the maintenance blob is coming from a valid TPM, the manufacturer
can require that a TPM identity sign the maintenance blob. The identity would be from a CA under the
control of the manufacturer and hence the manufacturer would be satisfied that the blob is from a valid
TPM.

End of informative comment.

Any migration of non-migratory data protected by a Subsystem SHALL require the cooperation of both the
Owner of that non-migratory data and the manufacturer of that Subsystem. That manufacturer SHALL
NOT cooperate in a maintenance process unless the manufacturer is satisfied that non-migratory data will
exist in exactly one Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCPA specification.

The maintenance feature MUST move the following

• TCPA_KEY for SRK. The maintenance process will reset the SRK authorization to match the TPM
Owners authorization

• TCPA_PERSISTENT_DATA -> tpmProof

• TPM Owners authorization

TCPA Main Specification Page 179

Version 1.1a 1 December 2001

7.3.1 TPM_CreateMaintenanceArchive
Start of informative comment:

This command creates the MaintenanceArchive. It can only be executed by the owner, and may be shut
off with the TPM_KillMaintenanceFeature command.

End of informative comment.
Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 1 2S 1 BOOL generateRandom Use RNG or Owner auth to generate ‘random’.

5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 4 3S 4 UINT32 randomSize Size of the returned random data. Will be 0 if
generateRandom is FALSE.

5 <> 4S <> BYTE [] random Random data to XOR with result.

6 4 5S 4 UINT32 archiveSize Size of the encrypted archive

7 <> 6S <> BYTE [] archive Encrypted key archive.

8 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

TCPA Main Specification Page 180

Version 1.1a 1 December 2001

Actions
Upon authorization being confirmed this command does the following:

1. Validates that the TCPA_PERSISTENT_FLAGS -> AllowMaintenance is TRUE.

2. Validates the TPM Owner authorization.

3. If the value of TCPA_PERSISTENT_DATA -> ManuMaintPub is zero, the TPM MUST return the error
code TCPA_KEYNOTFOUND

4. Build a1 a TCPA_KEY structure using the SRK. The encData field is not a normal
TCPA_STORE_ASYMKEY structure but rather a TCPA_MIGRATE_ASYMKEY structure built using
the following actions.

5. Build a TCPA_STORE_PRIVKEY structure from the SRK. This privKey element should be 132 bytes
long for a 2K RSA key.

6. Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is the first 20 bytes
of privKey, k2 contains the remainder of privKey.

7. Build m1 by creating and filling in a TCPA_MIGRATE_ASYMKEY structure

a. m1 -> usageAuth is set to TCPA_PERSISTENT_FIELDS -> tmpProof

b. m1 -> pubDataDigest is set to the digest value of the SRK fields from step 4

c. m1 -> payload is set to TCPA_PT_MAINT

d. m1 -> partPrivKey is set to k2

8. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m using OAEP parameters of

a. m = TCPA_MIGRATE_ASYMKEY structure (step 7)

b. P = TCPA_PERSISTENT_FIELDS -> ownerAuth

c. seed = s1 = k1 (step 6)

9. If GenerateRandom = TRUE

a. Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same size
as o1. Set RandomData parameter to r1

10. If GenerateRandom = FALSE

a. Create r1 by applying MGF1 to the TPM Owner authorization data. The size of r1 MUST
be the same size as o1. Set RandomData parameter to null.

11. Create x1 by XOR of o1 with r1

12. Encrypt x1 with the ManuMaintPub key using the TCPA_ES_RSAESOAEP_SHA1_MGF1 encryption
scheme.

13. Set a1 -> encData to x1

14. Return a1 in the archive parameter

TCPA Main Specification Page 181

Version 1.1a 1 December 2001

7.3.2 TPM_LoadMaintenanceArchive
Start of informative comment:

This command loads in a Maintenance archive that has been massaged by the manufacturer to load into
another TPM

End of informative comment.
Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

 … … Vendor specific arguments

- 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 - 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

- 20 - 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 - 1 BOOL continueAuthSession The continue use flag for the authorization handle

-- 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

 Vendor specific arguments

- 20 - 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 - 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 - 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

- 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Descriptions

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global secret. The
definition of global secret is a secret value shared by more than one TPM.

TCPA Main Specification Page 182

Version 1.1a 1 December 2001

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption in the
maintenance process. The maintenance process MAY use a TPM Identity to deliver maintenance
information to specific TPM’s.

The maintenance process can only change the SRK, tpmProof and TPM Owner authorization fields.

The maintenance process can only access data in shielded locations where this data is necessary to
validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after
maintenance. The maintenance MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Actions
The TPM SHALL perform the following when executing the command

1. Validate the TPM Owner’s authorization

2. Validate that the maintenance information was sent by the TPME. The validation mechanism MUST
use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

3. The packet MUST contain m2 as defined in 7.3.1

4. Ensure that only the target TPM can interpret the maintenance packet. The protection mechanism
MUST use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

5. Process the maintenance information and update the SRK and TCPA_PERSISTENT_DATA ->
tpmProof fields.

6. Set the SRK useageAuth to be the same as TPM Owners authorization

TCPA Main Specification Page 183

Version 1.1a 1 December 2001

7.3.3 TPM_KillMaintenanceFeature
Informative Comments:

The KillMaintencanceFeature is a permanent action that prevents ANYONE from creating a maintenance
archive. This action, once taken, is permanent until a new TPM Owner is set.

This action is to allow those customers who do not want the maintenance feature to not allow the use of
the maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such a way that the
only way to recover maintainability of the platform would be to wipe out the root keys. This feature is
mandatory in any TPM that implements the maintenance feature.

End informative Comment
Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

5 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Actions

TCPA Main Specification Page 184

Version 1.1a 1 December 2001

1. Validate the TPM Owner authorization

2. Set the TCPA_PERSISTENT_FLAGS.AllowMaintenance flag to FALSE.

TCPA Main Specification Page 185

Version 1.1a 1 December 2001

7.3.4 TPM_LoadManuMaintPub
Informative Comments:

The LoadManuMaintPub command loads the manufacturer’s public key for use in the maintenance
process. The command installs ManuMaintPub in persistent data storage inside a TPM. Maintenance
enables duplication of non-migratory data in protected storage. There is therefore a security hole if a
platform is shipped before the maintenance public key has been installed in a TPM.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected
storage. It therefore does not use authorization.

End of Informative Comments
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 TCPA_NONCE antiReplay AntiReplay and validation nonce

5 <> TCPA_PUBKEY pubKey The public key of the manufacturer to be in use for
maintenance

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 TCPA_DIGEST checksum Digest of pubKey and antiReplay

Type
Optional; TCPA protected capability

Description

The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm with 2048bit
keys.

pubKey SHOULD unambiguously identify the entity that will perform the maintenance process with the
TPM Owner.

TCPA_PERSISTENT_DATA -> ManuMaintPub SHALL exist in a TCPA-shielded location, only.

If an entity (Platform Entity) does not support the maintenance process but issues a platform credential
for a platform containing a TPM that supports the maintenance process, the value of
TCPA_PERSISTENT_DATA -> ManuMaintPub MUST be set to zero before the platform leaves the
entity’s control.

TCPA Main Specification Page 186

Version 1.1a 1 December 2001

Actions
The first valid TPM_LoadManuMaintPub command received by a TPM SHALL

1. Store the parameter pubKey as TCPA_PERSISTENT_DATA -> ManuMaintPub.

2. Create “checksum” by concatenating data to form (pubKey||antiReplay) and passing the
concatenated data through a SHA-1 hash process.

3. Export the checksum

Subsequent calls to TPM_LoadManuMaintPub SHALL return code TCPA_FAIL.

TCPA Main Specification Page 187

Version 1.1a 1 December 2001

7.3.5 TPM_ReadManuMaintPub
Informative Comments:

The ReadManuMaintPub command is used to check whether the manufacturer’s public maintenance key
in a TPM has the expected value. This may be useful during the manufacture process. The command
returns a digest of the installed key, rather than the key itself. This hinders discovery of the maintenance
key, which may (or may not) be useful for manufacturer privacy.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected
storage. It therefore does not use authorization.

End of Informative Comments
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 TCPA_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 TCPA_DIGEST checksum Digest of pubKey and antiReplay

Type
Optional; TCPA protected capability

Description

This command returns the hash of the antiReplay nonce and the previously loaded manufacturer’s
maintenance public key.

Actions
The TPM_ ReadManuMaintKey command SHALL

1. Create “checksum” by concatenating data to form (TCPA_PERSISTENT_DATA -> ManuMaintPub
||antiReplay) and passing the concatenated data through SHA1.

2. Export the checksum

TCPA Main Specification Page 188

Version 1.1a 1 December 2001

8. Cryptographic and Miscellaneous Functions

8.1 Introduction
Start of informative comment:

This section describes the cryptographic functions and the miscellaneous functions that do not fit into any
specific category.

End of informative comment.

TCPA Main Specification Page 189

Version 1.1a 1 December 2001

8.2 TPM Hash Operations
Start of informative comment:
The TPM must provide support to produce a SHA-1 digest. These commands are primarily intended for
use in the early stages of a boot process, before more sophisticated computing resources are available.

End of informative comment.

The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start command and
a TPM_SHA1Complete command SHALL be a variable number (possibly 0) of TPM_SHA1Update
commands.

The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start command and
a TPM_SHA1CompleteExtend command SHALL be a variable number (possibly 0) of TPM_SHA1Update
commands.

TCPA Main Specification Page 190

Version 1.1a 1 December 2001

8.2.1 TPM_SHA1Start
Start of informative comment:

This capability starts the process of calculating a SHA-1 digest.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Start

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 maxNumBytes Maximum number of bytes that can be sent to
TPM_SHA1Update. Must be a multiple of 64 bytes.

Description

This capability prepares the TPM for a subsequent TPM_SHA1Update, TPM_SHA1Complete or
TPM_SHA1CompleteExtend command. The capability SHALL open a thread that calculates a SHA-1
digest.

TCPA Main Specification Page 191

Version 1.1a 1 December 2001

8.2.2 TPM_SHA1Update
Start of informative comment:

This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of the process, the
digest remains pending.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Update

4 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64
bytes.

5 <> BYTE [] hashData Bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Description

This command SHALL incorporate complete blocks of data into the digest of an existing SHA-1 thread.
Only integral numbers of complete blocks (64 bytes each) can be processed.

TCPA Main Specification Page 192

Version 1.1a 1 December 2001

8.2.3 TPM_SHA1Complete
Start of informative comment:

This capability terminates a pending SHA-1 calculation.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Complete

4 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

5 <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TCPA_DIGEST hashValue The output of the SHA-1 hash.

Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, and terminate that thread. hashDataSize MAY have values in the range of 0 through 64, inclusive.

TCPA Main Specification Page 193

Version 1.1a 1 December 2001

8.2.4 TPM_SHA1CompleteExtend
Start of informative comment:

This capability terminates a pending SHA-1 calculation and EXTENDS the result into a Platform
Configuration Register using a SHA-1 hash process.

This command is designed to complete a hash sequence and extend a PCR in memory-less
environments.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of
TPM_ORD_SHA1CompleteExtend

4 4 TCPA_PCRINDEX pcrNum Index of the PCR to be modified

5 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TCPA_DIGEST hashValue The output of the SHA-1 hash.

5 20 TCPA_PCRVALUE outDigest The PCR value after execution of the command.

Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, EXTEND the resultant digest into a PCR, and terminate the thread. hashDataSize MAY have
values in the range of 0 through 64, inclusive.

TCPA Main Specification Page 194

Version 1.1a 1 December 2001

8.3 Key Certification

8.3.1 TPM_CertifyKey
Start of informative comment:

The TPM_CERTIFYKEY operation allows a key to certify the public portion of certain storage and signing
keys.

A TPM identity key may be used to certify non-migratable keys but is not permitted to certify migratory
keys. As such, it allows the TPM to make the statement “this key is held in a TCPA-shielded location, and
it will never be revealed.” For this statement to have veracity, the Challenger must trust the policies used
by the Privacy CA that issued the identity and the maintenance policy of the TPM manufacturer.

Signing and legacy keys may be used to certify both migratable and non-migratable keys. Then the
usefulness of a certificate depends on the trust in the certifying key by the recipient of the certificate.

The key to be certified must be loaded before TPM_CertifyKey is called.

See appendix B for a table of where and when keys are in use.

End of informative comment.
Type
TCPA protected capability; user must authorize the use of key pointed to by idHandle and the key pointed
to by keyHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and
tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_CertifyKey

4 4 TCPA_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TCPA_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TCPA_NONCE antiReplay 160 bits of externally supplied data (typically a nonce
provided to prevent replay-attacks)

7 4 TCPA_AUTHHANDLE certAuthHandle The authorization handle used for certHandle.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
certAuthHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA certAuth The authorization digest for inputs and certHandle.
HMAC key: certKey.auth.

11 4 TCPA_AUTHHANDLE keyAuthHandle The authorization handle used for the key to be signed.

 2 H2 20 TCPA_NONCE keylastNonceEven Even nonce previously generated by TPM

12 20 3 H2 20 TCPA_NONCE keynonceOdd Nonce generated by system associated with
keyAuthHandle

TCPA Main Specification Page 195

Version 1.1a 1 December 2001

13 1 4 H2 1 BOOL continueKeySession The continue use flag for the authorization handle

14 20 TCPA_AUTHDATA keyAuth The authorization digest for the inputs and key to be
signed. HMAC key: key.usageAuth.

Outgoing Operands and Sizes

Param HMAC

Sz # Sz
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and
tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal TPM_ORD_CertifyKey

4 95 3S 95 TCPA_CERTIFY_INFO certifyInfo The certifyInfo structure that corresponds to the
signed key.

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[] outData The signed public key.

7 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
certAuthHandle

8 1 4 H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters
and parentHandle. HMAC key: certKey -> auth.

10 20 2 H2 20 TCPA_NONCE keyNonceEven Even nonce newly generated by TPM

 3 H2 20 TCPA_NONCE keynonceOdd Nonce generated by system associated with
keyAuthHandle

11 1 4 H2 1 BOOL continueKeyAuthSession Continue use flag for target key session

12 20 TCPA_AUTHDATA keyAuth The authorization digest for the target key. HMAC
key: key.auth.

Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of

TCPA_SS_RSASSAPKCS1v15_SHA1.

2. The TPM verifies the authorization in certAuthHandle provides authorization to use the key pointed to
by certHandle.

3. The TPM verifies the authorization in keyAuthHandle provides authorization to use the key pointed to
by keyHandle.

4. If the key pointed to by certHandle is an identity key (certHandle:TCPA_KEY -> keyUsage is
TPM_KEY_IDENTITY), the TPM verifies that the key pointed to by keyHandle is a non-migratory key.

5. The TPM SHALL create a c1 a TCPA_CERTIFY_INFO (defined in section 4.28) structure from the
key pointed to by keyHandle.

6. The TPM calculates the digest of the (public key) keyHandle -> pubKey -> key and stores it in the c1 -
> pubkeyDigest.

TCPA Main Specification Page 196

Version 1.1a 1 December 2001

7. The TPM copies the antiReplay parameter to the TCPA_CERTIFY_INFO c1 -> data.

8. If pcrInfoSize is not 0 for the key pointed by keyHandle,
a. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle key.

b. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key.

c. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00.

9. If pcrInfoSize is 0 for the key pointed to by keyHandle
a. The TPM MUST set c1 -> pcrInfoSize to 0

10. The TPM creates m1, a message digest formed by taking the SHA1 of c1.

11. The TPM then performs a signature using certHandle -> sigScheme. The resulting signed blob is
returned in outData.

TCPA Main Specification Page 197

Version 1.1a 1 December 2001

8.4 TPM Internal Asymmetric Encryption
Start of Informative Comment:
For asymmetric encryption schemes, the TPM is not required to perform the blocking of information where
that information cannot be encrypted in a single cryptographic operation. The schemes
TCPA_ES_RSAESOAEP_SHA1_MGF1 and TCPA_ES_RSAESPKCSV15 allow only single block
encryption. When using these schemes, the caller to the TPM must perform any blocking and unblocking
outside the TPM. It is the responsibility of the caller to ensure that multiple blocks are properly protected
using a chaining mechanism.

Note that there are inherent dangers associated with splitting information so that it can be encrypted in
multiple blocks with an asymmetric key, and then chaining together these blocks together. For example,
if an integrity check mechanism is not used, an attacker can encrypt his own data using the public key,
and substitute this rogue block for one of the original blocks in the message, thus forcing the TPM to
replace part of the message upon decryption.

There is also a more subtle attack to discover the data encrypted in low-entropy blocks. The attacker
makes a guess at the plaintext data, encrypts it, and substitutes the encrypted guess for the original
block. When the TPM decrypts the complete message, a successful decryption will indicate that his
guess was correct.

There are a number of solutions which could be considered for this problem – One such solution for
TPMs supporting symmetric encryption is specified in PKCS#7, section 10, and involves using the public
key to encrypt a symmetric key, then using that symmetric key to encrypt the long message.

For TPMs without symmetric encryption capabilities, an alternative solution may be to add random
padding to each message block, thus increasing the block’s entropy.

End of informative comment

The TPM MUST check that the encryption scheme defined for use with the key is a valid scheme for the
key type, as follows:

Key algorithm Approved schemes Scheme Value
TCPA_ALG_RSA TCPA_ES_NONE 0x0001
 TCPA_ES_RSAESPKCSv15 0x0002
 TCPA_ES_RSAESOAEP_SHA1_MGF1 0x0003

For a TPM_UNBIND command where the parent key has pubKey.algorithmId equal to TCPA_ALG_RSA
and pubKey.encScheme set to TCPA_ES_RSAESPKCSv15 the TPM SHALL NOT expect a
PAYLOAD_TYPE structure to pre-pend the decrypted data.

The TPM MUST perform the encryption or decryption in accordance with the specification of the
encryption scheme, as described below.

When a null terminated string is included in a calculation, the terminating null SHALL NOT be included in
the calculation.

TCPA Main Specification Page 198

Version 1.1a 1 December 2001

8.4.1 TCPA_ES_RSAESOAEP_SHA1_MGF1
The encryption and decryption MUST be performed using the scheme RSA_ES_OAEP defined in [PKCS
#1v2.0: 8.1] using SHA1 as the hash algorithm for the encoding operation.

1. Encryption
a. The OAEP encoding P parameter MUST be the NULL terminated string “TCPA”.

b. If there is an error with the encryption the TPM must return the error
TCPA_ENCRYPT_ERROR.

2. Decryption
a. The OAEP decoding P parameter MUST be the NULL terminated string “TCPA”.

b. If there is an error with the decryption, the TPM must return the error
TCPA_DECRYPT_ERROR.

8.4.2 TCPA_ES_RSAESPKCSV15
The encryption MUST be performed using the scheme RSA_ES_PKCSV15 defined in [PKCS #1v2.0:
8.1].

1. Encryption
a. If there is an error with the encryption, return the error TCPA_ENCRYPT_ERROR.

2. Decryption
a. If there is an error with the decryption, return the error TCPA_DECRYPT_ERROR.

8.5 TPM Internal Digital Signatures
Start of informative comment:
These values indicate the approved schemes in use by the TPM to generate digital signatures.

End of informative comment.

The TPM MUST check that the signature scheme defined for use with the key is a valid scheme for the
key type, as follows:

Key algorithm Approved schemes Scheme Value

TCPA_ALG_RSA TCPA_SS_NONE 0x0001

 TCPA_SS_RSASSAPKCS1v15_SHA1 0x0002

 TCPA_SS_RSASSAPKCS1v15_DER 0x0003

The TPM MUST perform the signature or verification in accordance with the specification of the signature
scheme, as described below.

8.5.1 TCPA_SS_RSASSAPKCS1v15_SHA1
The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0:
8.1] using SHA1 as the hash algorithm for the encoding operation.

TCPA Main Specification Page 199

Version 1.1a 1 December 2001

8.5.2 TCPA_SS_RSASSAPKCS1v15_DER
The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0:
8.1]. The caller must properly format the area to sign using the DER rules. The provided area maximum
size is k-11 octets.

8.6 HMAC Calculation
Start of informative comment:

The HMAC provides two pieces of information to the TPM: proof of knowledge of the authorization data
and proof that the request arriving is authorized and has no modifications made to the command in
transit.

The HMAC definition is for the HMAC calculation only. It does not specify the order or mechanism that
transports the data from caller to actual TPM.

The creation of the HMAC is order dependent. Each command has specific items that are portions of the
HMAC calculation. The actual calculation starts with the definition from RFC 2104.

RFC 2104 requires the selection of two parameters to properly define the HMAC in use. These values are
the key length and the block size. This specification will use a key length of 20 bytes and a block size of
64 bytes. These values are known in the RFC as K for the key length and B as the block size.

The basic construct is

H(K XOR opad, H(K XOR ipad, text))

where

• H = the SHA1 hash operation

• K = the key or the authorization data

• XOR = the XOR operation

• opad = the byte 0x5C repeated B times

• B = the block length

• ipad = the byte 0x36 repeated B times

• text = the message information and any parameters from the command

End of informative comment.

The TPM MUST support the calculation of an HMAC according to RFC 2104.

The size of the key (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) MUST be 64
bytes.

The order of the parameters is critical to the TPM’s ability to recreate the HMAC. Not all of the fields are
sent on the wire for each command for instance only one of the nonce values travels on the wire. The
order of the parameters is set by section 4.4.

Each function indicates what parameters are involved in the HMAC calculation.

TCPA Main Specification Page 200

Version 1.1a 1 December 2001

8.7 Digital Signatures

8.7.1 TPM_Sign
Start of informative comment:

The Sign command signs data and returns the resulting digital signature

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the keyHandle parameter.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Sign.

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform
digital signatures.

5 4 2s 4 UINT32 areaToSignSize The size of the areaToSign parameter

6 <> 3s <> BYTE[] areaToSign The value to sign

7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the use of
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Sign.

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] sig The resulting digital signature.

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

TCPA Main Specification Page 201

Version 1.1a 1 December 2001

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth

Description
The TPM MUST support all values of areaToSignSize that are legal for the defined signature scheme and
key size. The maximum value of areaToSignSize is determined by the defined signature scheme and key
size. In the case of PKCS1v15_SHA1 the areaToSignSize MUST be TCPA_DIGEST (the hash size of a
sha1 operation - see 8.5.1 TCPA_SS_RSASSAPKCS1v15_SHA1). In the case of PKCS1v15_DER the
maximum size of areaToSign is k-11 octets, where k is limited by the key size (see 8.5.2
TCPA_SS_RSASSAPKCS1v15_DER).

Actions
1. If the areaToSignSize is 0 the TPM returns TCPA_BAD_PARAMETER.

2. The TPM validates the authorization to use the key pointed to by keyHandle.

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGN or TPM_KEY_LEGACY, if not return the
error code TCPA_INVALID_KEYUSAGE

4. The TPM verifies that the signature scheme used by the key referenced by keyHandle is a valid and
supported signature scheme.

5. The TPM verifies that the signature scheme and key size can properly sign the areaToSign
parameter.

6. The TPM computes the signature, sig, using the key referenced by keyHandle, using with areaToSign
as the information to be signed

TCPA Main Specification Page 202

Version 1.1a 1 December 2001

8.7.2 TSS_VerifySignature
Start of informative comment:

VerifySignature takes a hash and verifies the digital signature of the hash. VerifySignature only returns a
TRUE or FALSE answer. The caller does not receive any information as to the reason for a failure.

The prohibition of returning any error information is especially important for TPM’s that implement
TSS_VerifySignature as operations on the TPM.

End of informative comment.

TCPA Main Specification Page 203

Version 1.1a 1 December 2001

8.8 Random Numbers
Start of informative comment:
The TPM has the ability to generate random numbers. This section merely exposes these numbers to
allow entities outside of the TPM to use a random number.

The size of the output random area is only limited by the size requested.

Some random number generator implementations are strengthen by adding entropy to the RNG at
various intervals. The stir command allows those implementations to receive the entropy when it is
available.

End of informative comment.

TCPA Main Specification Page 204

Version 1.1a 1 December 2001

8.8.1 TPM_GetRandom
Start of informative comment:
GetRandom returns the next bytesRequested bytes from the random number generator to the caller.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetRandom.

4 4 UINT32 bytesRequested Number of bytes to return

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 randomBytesSize The number of bytes returned

5 <> BYTE[] randomBytes The returned bytes

Actions
1. The TPM determines if amount bytesRequested is available from the TPM.

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY be less than
randomBytesSize.

3. Set randomBytes to the next randomBytesSize bytes from the RNG

4. It is RECOMMENDED that a TPM implement the RNG in a manner that would allow it to return RNG
bytes such that the frequency of bytesRequested being less than the number of bytes available be a
infrequent occurrence.

TCPA Main Specification Page 205

Version 1.1a 1 December 2001

8.8.2 TPM_StirRandom
Start of informative comment:

StirRandom adds entropy to the RNG state.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_StirRandom

4 4 UINT32 dataSize Number of bytes of input (<256)

5 <> BYTE[] inData Data to add entropy to RNG state

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
The TPM updates the state of the current RNG using the appropriate mixing function.

TCPA Main Specification Page 206

Version 1.1a 1 December 2001

8.9 Self Test
Start of informative comment:
The self-test capabilities are designed to enable the creation of a TCPA platform with minimum latency
due to TPM self-test. It might be possible to avoid wasting time, waiting for a TPM to do self-test, by
designing a platform where TPM self-testing is done in parallel with other system functions, at a time
when TPM capabilities are not required.

At startup, a TPM automatically tests just those internal functions that are used by critical TPM
capabilities. This permits the use of those critical TPM capabilities as soon as possible after startup.
Remaining TPM capabilities use additional internal functions that must be tested before the remaining
TPM capabilities can execute. A test of the additional functions can be explicitly called. Alternatively,
those functions will automatically be tested prior to execution of the first call to a capability that uses those
functions. At any time, other self-test commands will explicitly cause the TPM to do a full self-test.

TPM_SelfTestFull causes the TPM to do a full self-test.

TPM_CertifySelfTest causes the TPM to do a full self-test and sign the result. It enables the caller to
verify that the self-test actually executed and trust the answer. It requires authorization to use a signing
key inside the TPM. If the command fails for any reason, the command will not return a signature. The
lack of a signature field returning to a Challenger is in itself an indication that some part of the process
failed. The failure could be an attack against the signature or a failure in the TPM.

TPM_ContinueSelfTest causes the TPM to test the TPM internal functions that were not tested at startup.
TPM_ContinueSelfTest is unusual, in that it returns a result code to the caller before execution of the
command and does not return a result code to the caller after execution of the command. If the functions
used by a capability have not been tested, TPM_ContinueSelfTest is executed automatically after that
capability is called and before it is executed. It is anticipated that the caller or TPM driver software is
preprogrammed with knowledge of the time that the TPM will require to complete TPM_ContinueSelfTest.
It is anticipated that a call to a TPM that is executing TPM_ContinueSelfTest would result in a “busy”
indication.

The tests themselves only return a TCPA_SUCCESS or TCPA_FAIL answer. TPM_GetTestResult must
be used to discover why self-test failed. Upon the failure of a self-test the TPM goes into failure mode and
does not allow most other operations to continue.

End of informative comment.

At startup, a TPM MUST self-test all internal functions that are necessary to do TPM_SHA1Start,
TPM_SHA1Update, TPM_SHA1Complete, TPM_SHA1CompleteExtend, TPM_Extend, TPM_Startup,
TPM_ContinueSelfTest. This process MUST take 20ms or less.

TSC commands do not operate on shielded locations and have no requirement to be self tested before
any use. TPM’s SHOULD test these functions before operation.

Some internal functions MUST be tested before the TPM responds to any capability (see 10.8.1). Some
internal functions SHOULD be tested before the TPM responds to any capability (see 10.8.2).

If self test has failed, the TPM SHALL respond to all commands (except the update commands) with the
error code TCPA_FAILEDSELFTEST (see 10.8.3).

If the functions used by a capability have not been tested, TPM_ContinueSelfTest is executed
automatically after that capability is called and before it is executed returning the error
TCPA_NEED_SELFTEST

TCPA Main Specification Page 207

Version 1.1a 1 December 2001

8.9.1 TPM_SelfTestFull
Start of informative comment:

SelfTestFull tests all of the TCPA protected capabilities.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SelfTestFull

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function.

2. Failure of any test results in overall failure, and the TPM goes into failure mode.

TCPA Main Specification Page 208

Version 1.1a 1 December 2001

8.9.2 TPM_CertifySelfTest
Start of informative comment:

CertifySelfTest causes the TPM to perform a full self-test and return an authenticated value if the test
passes.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the
third party. A TPM-identity key may be suitable.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the keyHandle parameter.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform
digital signatures.

5 20 2s 20 TCPA_NONCE antiReplay AnitReplay nonce to prevent replay of messages

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the inputs and
use of keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] sig The resulting digital signature.

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

TCPA Main Specification Page 209

Version 1.1a 1 December 2001

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth

Description
The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or
TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual TPM.

Actions
1. The TPM SHALL perform TPM_SelfTestFull. If the test fails the TPM returns the appropriate error

code.

2. After successful completion of the self-test the TPM then validates the authorization to use the key
pointed to by keyHandle.

3. Create t1 the null terminated string of “Test Passed”

4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal.

5. The TPM signs m2 using the key identified by keyHandle, and returns the signature as sig.

TCPA Main Specification Page 210

Version 1.1a 1 December 2001

8.9.3 TPM_ContinueSelfTest
Start of informative comment:

CotinueSelfTest informs the TPM that it may complete the self test of all TPM functions.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ContinueSelfTest

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
TPM_ContinueSelfTest SHALL cause the TPM to do all self-tests that are outstanding, since startup. It
SHALL immediately respond to the caller with a return code. When TPM_ContinueSelfTest finishes
execution, it SHALL NOT respond to the caller with a return code.

The TPM SHALL unilaterally execute the functions of TPM_ContinueSelfTest upon receipt of a command
that calls a capability-X that uses untested TPM functions. If the self-test fails, the TPM SHALL return the
error code TCPA_FAILEDSELFTEST. If the self-test passes, the TPM SHALL execute capability-X.

TCPA Main Specification Page 211

Version 1.1a 1 December 2001

8.9.4 TPM_GetTestResult
Start of informative comment:

TPM_GetTestResult provides manufacturer specific information regarding the results of the self test. This
command will work when the TPM is in self test failure mode. The reason for allowing this command to
operate in the failure mode is to allow TPM manufacturers to obtain diagnostic information.

End of informative comment.
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetTestResult

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 outDataSize The size of the outData area

5 <> BYTE[] outData The outData this is manufacturer specific

Actions
The TPM SHALL respond to this command with a manufacturer specific block of information that
describes the result of the latest self test.

The information MUST NOT contain any data that uniquely identifies an individual TPM.

TCPA Main Specification Page 212

Version 1.1a 1 December 2001

8.10 Reset and Clear Operations
Start of informative comment:
Reset is the process of clearing all handles and sessions. The reset does not affect PCR values or
volatile flag values that are set on TPM initialization. The reset does not affect the SRK or ownership
values.

Clear is the process of returning the TPM to factory defaults. The clear commands need protection from
unauthorized use and must allow for the possibility of changing Owners. The clear process has
authorized commands and mechanisms to not allow the clear operation to occur.

The clear functionality performs the following tasks:

• Delete SRK. The deletion of the SRK includes the destruction of all protected storage areas below the
SRK in the hierarchy. The areas below are not destroyed they just have no mechanism to be loaded
anymore.

• All TPM volatile and non-volatile data is set to default value except the endorsement key pair. The
clear includes the Owner-authorization data, so after performing the clear, the TPM has no Owner.
The PCR values are undefined after a clear operation.

• The TPM shall returns TCPA_NOSRK until an Owner is set. After the execution of the clear
command, the TPM must go through a power cycle to properly set the PCR values.

The Owner has ultimate control of when a clear occurs.

The Owner can perform the TPM_OwnerClear command using the TPM Owner authorization. If the
Owner wishes to disable this clear command and require physical access to perform the clear, the Owner
can issue the TPM_DisableOwnerClear command.

During the TPM startup processing anyone with physical access to the machine can issue the
TPM_ForceClear command. This command performs the clear. The TPM_DisableForceClear disables
the TPM_ForceClear command for the duration of the power cycle. TSS startup code that does not issue
the TPM_DisableForceClear leaves the TPM vulnerable to a denial of service attack. The assumption is
that the TSS startup code will issue the TPM_DisableForceClear on each power cycle after the TSS
determines that it will not be necessary to issue the TPM_ForceClear command. The purpose of the
TPM_ForceClear command is to recover from the state where the Owner has lost or forgotten the TPM
Ownership token.

The TPM_ForceClear must only be possible when the issuer has physical access to the platform. The
manufacturer of a platform determines the exact definition of physical access.

End of informative comment.

The TPM MUST support the reset operation. The reset operation clears all handles, authorization
sessions and volatile state machines. The reset MUST NOT affect the SRK, PCR and flags such as the
flag set by TPM_DisableForceClear.

The TPM MUST support the clear operations. The clear operation MUST perform the following actions:

• Perform a reset operation

• Delete the SRK

• Reset all non-volatile values to factory default except the endorsement key pair

• Return TCPA_NOSRK until there is a proper execution of the ownership function

The TPM MUST support disabling the clear operations. After execution of the TPM_DisableOwnerClear
the TPM MUST require physical access to execute the TPM_ForceClear. The TPM MUST support the
TPM_DisableForceClear to disable the TPM_ForceClear command. The TPM_DisableForceClear
command MUST execute on each startup cycle to be effective.

TCPA Main Specification Page 213

Version 1.1a 1 December 2001

8.10.1 TPM_Reset
Start of informative comment:

TPM_reset releases all resources associated with existing authorisation sessions. This is useful if a TSS
driver has lost track of the authorisation state in the TPM, for example.

End of informative comment.
Type

TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Reset.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
1. The TPM frees all resources allocated to authorization sessions extant in the TPM

2. The TPM does not reset any PCR or DIR values.

3. The TPM does not reset any flags in the TCPA_VOLATILE_FLAGS structure.

4. The TPM does not reset or delete any keys

TCPA Main Specification Page 214

Version 1.1a 1 December 2001

8.10.2 TPM_Init
Start of informative comment:

TPM_Init is a physical method of initializing a TPM. It calls TPM_reset to release any authorization
sessions and then puts the TPM into a state where it waits for the command TPM_startup (which
specifies the type of initialization that is required).

End of informative comment.
Definition
TPM_Init();

Type

TCPA protected capability that requires physical indication from the platform

Parameters

None

Description
The platform MUST be designed such that if the TPM_Init signal is asserted the entire Platform MUST be
initialized. This prevents, at least with a minimum effort, someone touching the TPM_Init pin on the TPM
and resetting only the TPM.

The TPM_Init signal MUST have signaling qualifications appropriate for the required conformance and
Protection Profile for the Platform.

Actions
1. The TPM performs a TPM_Reset.

2. The TPM sets TCPA_VOLATILE_FLAGS -> postInitialise to TRUE. See 4.13.3 for details of the
"postInitialise" state.

TCPA Main Specification Page 215

Version 1.1a 1 December 2001

8.10.3 TPM_SaveState
Start of informative comment:

This warns a TPM to save some state information.

If the relevant shielded storage is non-volatile, this command need have no effect.

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of external
power in time to move data to non-volatile memory, this command should be presented before the TPM
enters a low or no power state.

End of informative comment.
Type

TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveState.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Description
Preserved values MUST be non-volatile.

If data is never stored in a volatile medium, that data MAY be used as preserved data. In such cases, no
explicit action may be required to preserve that data.

If an explicit action is required to preserve data, it MUST be possible to determine whether preserved
data is valid.

If the parameter mirrored by a preserved value is altered, the preserved value MUST be declared invalid.
If the parameter mirrored by any preserved value is altered, all preserved values MAY be declared
invalid.

Actions

1. The contents of all PCRs MUST be preserved.

2. The contents of the auditDigest MUST be preserved.

3. The state of the flags:

i. TCPA_VOLATILE_FLAGS -> PhysicalPresence

ii. TCPA_VOLATILE_FLAGS -> PhysicalPresenceLock

TCPA Main Specification Page 216

Version 1.1a 1 December 2001

iii. TCPA_VOLATILE_FLAGS -> deactivated

iv. TCPA_VOLATILE_FLAGS -> disableForceClear

MUST be preserved.

4. The contents of any key that is currently loaded SHOULD be preserved if the key's parentPCRStatus
indicator is FALSE and its IsVolatile indicator is FALSE. The contents of any key that is currently
loaded MAY be preserved if its parentPCRStatus indicator is TRUE or its IsVolatile indicator is TRUE.

TCPA Main Specification Page 217

Version 1.1a 1 December 2001

8.10.4 TPM_Startup
Start of informative comment:

Some trusted entity must determine the type of startup state that is required and submit TPM_Startup
with the appropriate option.

TPM_Startup must always be preceded by TPM_Init, which is a physical indication (probably just a
system-wide reset signal) to a TPM that initialization is required. Determining the type of initialization
requires more intelligence than may be available from a simple physical mechanism, so TPM_Startup is
used to signal the type of initialization that is required.

A key that is itself wrapped to PCRs is not unloaded at startup because:

a) existing mechanisms (specified in TPM_LoadKey) prevent use of the key unless the PCRs match. So
it is unnecessary to unload the key

b) the key may be required for later use, without reloading, in which case it is undesirable to unload the
key.

End of informative comment.
Type

TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Startup

4 2 TCPA_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Description
TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

Actions

1. If no EK is present, the TPM MUST return TCPA_NO_ENDORSEMENT and exit this capability.

2. If TCPA_VOLATILE_FLAGS -> postInitialise is FALSE, the TPM MUST return
TCPA_INVALID_POSTINIT, and exit this capability.

3. If stType = TCPA_ST_CLEAR
a. Reset PCR’s

TCPA Main Specification Page 218

Version 1.1a 1 December 2001

b. Reset the auditDigest

c. The TPM Must set the following flags to their default state:

i. TCPA_VOLATILE_FLAGS -> PhysicalPresence

ii. TCPA_VOLATILE_FLAGS -> PhysicalPresenceLock

iii. TCPA_VOLATILE_FLAGS -> disableForceClear

d. The TPM SHALL set TCPA_VOLATILE_FLAGS -> deactivated to the same state as
TCPA_PERSISTENT_FLAGS -> deactivated

e. The TPM SHALL take all necessary actions to ensure that all loaded keys contain the
preserved value if the preserved value is valid and the preserved value's parentPCRStatus
indicator is FALSE and its IsVolatile indicator is FALSE. All other key areas MUST be
unloaded. If the TPM is unable to successfully complete these actions, it SHALL enter the
TPM failure mode.

4. If stType = TCPA_ST_STATE
a. The TPM SHALL take all necessary actions to ensure that all PCRs contain valid preserved

values. If the TPM is unable to successfully complete these actions, it SHALL enter the TPM
failure mode.

b. The TPM SHALL take all necessary actions to ensure that the auditDigest contains a valid
preserved value. If the TPM is unable to successfully complete these actions, it SHALL enter
the TPM failure mode.

c. The TPM MUST restore the following flags to their preserved states:

i. TCPA_VOLATILE_FLAGS -> PhysicalPresence

ii. TCPA_VOLATILE_FLAGS -> PhysicalPresenceLock

iii. TCPA_VOLATILE_FLAGS -> deactivated

iv. TCPA_VOLATILE_FLAGS -> disableForceClear

d. The TPM MUST restore all keys that have been saved

e. The TPM resumes normal operation. If the TPM is unable to resume normal operation, it
SHALL enter the TPM failure mode.

5. If stType = TCPA_ST_DEACTIVATED
a. The TPM MUST set TCPA_VOLATILE_FLAGS -> deactivated to TRUE

6. The TPM MUST invalidate any explicitly preserved state and set TCPA_VOLATILE_FLAGS ->
postInitialise to FALSE.

TCPA Main Specification Page 219

Version 1.1a 1 December 2001

8.10.5 TPM_OwnerClear
Start of informative comment:

The OwnerClear command performs the clear operation under Owner authorization. This command is
available until the Owner executes the DisableOwnerClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.
Type
TCPA protected capability; user must provide authorization as the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

5 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Ignored

7 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Fixed value FALSE

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: old ownerAuth.

Actions
1. The TPM verifies that the authHandle properly authorizes the owner.

2. After owner verification the TPM then checks the status of the TCPA_PERSISTENT_FLAGS ->
DisableOwnerClear flag, if set the TPM returns TCPA_CLEAR_DISABLED.

TCPA Main Specification Page 220

Version 1.1a 1 December 2001

3. The TPM executes the TPM_Reset command. The TPM then destroys the SRK and any internal data
associated with the SRK. The TPM then destroys the TPM Ownership data.

4. The TPM unloads all loaded keys.

5. The TPM sets all DIR registers to their default value.

6. The TPM sets TCPA_PERSISTENT_FLAGS to their default values.

7. The result will be no Owner or SRK and the TPM is set to the state where it returns TCPA_NOSRK.

TCPA Main Specification Page 221

Version 1.1a 1 December 2001

8.10.6 TPM_DisableOwnerClear
Start of informative comment:

The DisableOwnerClear command disables the ability to execute the TPM_OwnerClear command
permanently. Once invoked the only method of clearing the TPM will require physical access to the TPM.

End of informative comment.
Type
TCPA protected capability; user must provide authorization as the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

5 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Actions
1. The TPM verifies that the authHandle properly authorizes the owner.

2. The TPM sets the TCPA_PERSISTENT_FLAGS -> disableownerclear flag to TRUE.

3. The only mechanism that can clear the TPM is the TPM_ForceClear command. The TPM_ForceClear
command requires physical access to the TPM to execute.

TCPA Main Specification Page 222

Version 1.1a 1 December 2001

8.10.7 TPM_ForceClear
Start of informative comment:

The ForceClear command performs the Clear operation under physical access. This command is
available until the execution of the DisableForceClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.
Type
TCPA protected capability; there must be some evidence of physical access to the platform present for
the TPM to verify.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ForceClear

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
1. The TPM checks for a prior execution of the TPM_DisableForceClear command. If executed, the

TPM will return TCPA_CLEAR_DISABLED.

2. After verification of physical access, the TPM performs a clear operation that has the same result as
the TPM_OwnerClear. After execution the result of this command is exactly like the
TPM_OwnerClear.

3. The implementation of the physical access requirement is a manufacturer option. The evidence of
physical access could be done by setting a pin high on a chip, or by sending special bus cycles or by
any other mechanism that provides evidence of physical access.

TCPA Main Specification Page 223

Version 1.1a 1 December 2001

8.10.8 TPM_DisableForceClear
Start of informative comment:

The DisableForceClear command disables the execution of the ForceClear command until the next
startup cycle. Once this command is executed, the TPM_ForceClear is disabled until another startup
cycle is run.

End of informative comment.
Type

TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_DisableForceClear

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
The TPM sets the TCPA_VOLATILE_FLAGS.disableforceclear flag in the TPM that disables the
execution of the TPM_ForceClear command.

TCPA Main Specification Page 224

Version 1.1a 1 December 2001

8.11 The GetCapability Commands
Start of informative comment:
The TPM has numerous capabilities that a remote entity may wish to know about. These items include
support of algorithms, key sizes, protocols and vendor-specific additions. The GetCapability command
allows the TPM to report back to the requestor what type of TPM it is dealing with.

There are two variations of the GetCapability command: one that provides a signed response and one
that merely returns the answer without an accompanying signature. The information in each is the same
except for the inclusion or absence of a digital signature.

The request for information requires the requestor to specify which piece of information that is required.
The request does not allow the “merging” of multiple requests and returns only a single piece of
information.

In failure mode the TPM can only return manufacturer’s name, TPM model and TPM version.

End of informative comment.
The TPM MUST NOT return in response to the GetCapability command any information that identifies an
individual TPM.

TCPA Main Specification Page 225

Version 1.1a 1 December 2001

8.11.1 TPM_GetCapability
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 TCPA_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

5 4 UINT32 subCapSize Size of subCap parameter

6 <> BYTE[] subCap Further definition of information

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 respSize The length of the returned capability response

5 <> BYTE[] resp The capability response

Actions
The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates
the response field and fills in the actual information.

CapArea subCap Response

TCPA_CAP_ORD ORDINAL:
A value of command
ordinal:
see 4.33

Boolean value. TRUE indicates that
the TPM supports the ordinal.
FALSE indicates that the TPM does
not support the ordinal.

TCPA_CAP_ALG TCPA_ALG_XX:
A value of
TCPA_ALGORITHM_ID:
see 4.15

Boolean value. TRUE indicates that
the TPM supports the algorithm,
FALSE indicates that the TPM does
not support the algorithm.

TCPA_CAP_PID TCPA_PID:
A value of
TCPA_PROTOCOL_ID:
See 4.15

Boolean value. TRUE indicates that
the TPM supports the protocol,
FALSE indicates that the TPM does
not support the protocol.

TCPA_CAP_PROPERTY TPM_CAP_PROP_PCR UINT32 value. Returns the number
of PCR registers supported by the

TCPA Main Specification Page 226

Version 1.1a 1 December 2001

of PCR registers supported by the
TPM

TCPA_CAP_PROPERTY TPM_CAP_PROP_DIR UINT32 value. Returns the number
of DIR registers supported by the
TPM.

TCPA_CAP_PROPERTY TCPA_CAP_PROP_MANUFACTURE
R

UINT32 value. Returns the Identifier
of the TPM manufacturer.

TCPA_CAP_PROPERTY TCPA_CAP_PROP_SLOTS UINT32 value. Returns the
maximum number of 2048 bit RSA
keys that the TPM is capable of
loading. This MAY vary with time
and circumstances.

TCPA_CAP_VERSION Ignored Returns the TCPA_VERSION
structure that identifies the version
of the TPM. See 4.5

TCPA_CAP_KEY_HANDLE Ignored A TCPA_KEY_HANDLE_LIST
structure, describing the handles of
all keys that are currently loaded
into the TPM. See 4.9

TCPA_CAP_CHECK_LOAD
ED

ALGORITHM:
A value of
TCPA_KEY_PARMS: see 4.15

A Boolean value. TRUE indicates
that the TPM has enough memory
available to load a key of the type
specified by ALGORITHM. FALSE
indicates that the TPM does not
have enough memory.

The permitted values of TCPA_CAP_PROP_MANUFACTURER and their meaning SHALL be defined in
platform specific TCPA specifications.

IDL Definitions of subCap
#define TCPA_CAP_PROP_PCR 0x00000101
#define TCPA_CAP_PROP_DIR 0x00000102
#define TCPA_CAP_PROP_MANUFACTURER 0x00000103
#define TCPA_CAP_PROP_SLOTS 0x00000104

TCPA Main Specification Page 227

Version 1.1a 1 December 2001

8.11.2 TPM_GetCapabilitySigned
Start of informative comment:

TPM_GetCapabilitySigned is almost the same as TPM_GetCapability. The differences are that the input
includes a challenge (a nonce) and the response includes a digital signature to vouch for the source of
the answer.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the
third party. A TPM-identity key may be suitable.

End of informative comment.
Type
TCPA protected capability; the user must supply authorization to use of parameter keyHandle
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapabilitySigned

4 4 TCPA_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital
signatures.

5 20 2s 20 TCPA_NONCE antiReplay Nonce provided to allow caller to defend against replay of
messages

6 4 3s 4 TCPA_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

7 4 4s 4 UINT32 subCapSize Size of subCap parameter

8 <> 5s <> BYTE[] subCap Further definition of information

8 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the use of
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

TCPA Main Specification Page 228

Version 1.1a 1 December 2001

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapabilitySigned

4 4 3S 4 TCPA_VERSION version A properly filled out version structure.

5 4 4S 4 UINT32 respSize The length of the returned capability response

6 <> 5S <> BYTE[] resp The capability response

7 4 6S 4 UINT32 sigSize The length of the returned digital signature

8 <> 7S <> BYTE[] sig The resulting digital signature.

9 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth

Description
The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or
TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Actions
1. The TPM calls TPM_GetCapability passing the capArea and subCap fields and saving the resp field

as r1.

2. The TPM creates h1 by taking a SHA1 hash of the concatenation (r1 || antiReplay).

3. The TPM validates the authority to use keyHandle

4. The TPM creates a digital signature of h1 using the key in keyHandle and returns the result in sig.

TCPA Main Specification Page 229

Version 1.1a 1 December 2001

8.11.3 TPM_GetCapabilityOwner
Start of informative comment:

TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and the volatile
flags in a single operation.

The flags summarize many operational aspects of the TPM. The information represented by some flags is
private to the TPM Owner. So, for simplicity, proof of ownership of the TPM must be presented to retrieve
the set of flags. When necessary, the flags that are not private to the Owner can be deduced by Users via
other (more specific) means.

The normal TCPA authorization mechanisms are sufficient to prove the integrity of the response. No
additional integrity check is required.

End of informative comment.
Type
TCPA protected capability; user must provide authentication from the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapbilityOwner

3 4 TCPA_AUTHHANDLE authHandle The authorization handle used for Owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

4 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

6 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: OwnerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

3 4 2S 4 TCPA_VERSION version A properly filled out version structure.

4 4 3S 4 UINT32 non_volatile_flags The current state of the non-volatile flags.

5 4 4S 4 UINT32 volatile_flags The current state of the volatile flags.

6 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC k O A th

TCPA Main Specification Page 230

Version 1.1a 1 December 2001

HMAC key: OwnerAuth.

Description
For 31>=N>=0

• Bit-N of the TCPA_PERSISTENT_FLAGS structure is the Nth bit after the opening bracket in the
definition of TCPA_PERSISTENT_FLAGS in the version of the specification indicated by the
parameter “version”. The bit immediately after the opening bracket is the 0th bit.

• Bit-N of the TCPA_VOLATILE_FLAGS structure is the Nth bit after the opening bracket in the
definition of TCPA_VOLATILE_FLAGS in the version of the specification indicated by the
parameter “version”. The bit immediately after the opening bracket is the 0th bit.

• Bit-N of non_volatile_flags corresponds to the Nth bit in TCPA_PERSISTENT_FLAGS.

• Bit-N of volatile_flags corresponds to the Nth bit in TCPA_VOLATILE_FLAGS.

Actions
1. The TPM validates that the TPM Owner authorizes the command.

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state as the
corresponding bit in TCPA_PERSISTENT_FLAGS. Bits in non_volatile_flags for which there is no
corresponding bit in TCPA_PERSISTENT_FLAGS are set to zero.

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the
corresponding bit in TCPA_VOLATILE_FLAGS. Bits in volatile_flags for which there is no
corresponding bit in TCPA_VOLATILE_FLAGS are set to zero.

4. The TPM generates the parameter “version”.

5. The TPM returns non_volatile_flags, volatile_flags and version to the caller.

TCPA Main Specification Page 231

Version 1.1a 1 December 2001

8.12 Audit Commands
Start of informative comment:
The TPM and TSS need to be able to report a log of events. The log uses the same paradigm as the
PCRs, the TPM keeps a PCR value that extends for each log event, and the TSS maintains the log
entries for Challengers to review.

The Owner has the ability to set which functions generate an audit event and to change which functions
generate the event at any time.

The status of the audit generation is not seen as sensitive information and so the command to determine
the status of the generation is not an authorized command.

End of informative comment.

Each command ordinal has an indicator in non-volatile TPM memory indicating if executing the command
will result in the generation of an audit event.

The audit event includes the command ordinal and the return code from the command.

The digest value SHALL be SHA1 (previous value || command ordinal || return code). The digest value
register SHALL have a starting value of NULLS.

Updating of auditDigest MAY cease when TCPA_VOLATILE_FLAGS -> deactivated is TRUE. This is
because a deactivated TPM performs no useful service until a platform is rebooted, at which point
auditDigest is reset.

TCPA Main Specification Page 232

Version 1.1a 1 December 2001

8.12.1 TPM_GetAuditEvent
Start of informative comment:

The TPM uses this command to get the audit information from the TPM.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditEvent

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_COMMAND_CODE cmdOrd Last audited command executed

5 4 UINT32 cmdReturnCode Return code for cmdOrd

6 20 TCPA_DIGEST auditDigest Log of all audited events

Actions
1. The TPM sets cmdOrd to the ordinal of the last audited function.

2. The TPM sets cmdReturnCode to the return code for the last audited function.

3. The TPM sets auditDigest to the extended digest value of all audited functions.

TCPA Main Specification Page 233

Version 1.1a 1 December 2001

8.12.2 TPM_GetAuditEventSigned
Start of informative comment:

This command returns the same information as the TPM_GetAuditEvent but the result is signed.

End of informative comment.
Type
TCPA protected capability; user must provide authentication to use the key pointed to by keyHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditEventSigned

4 4 TCPA_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital
signatures.

5 20 2s 20 TCPA_NONCE antiReplay A nonce to prevent antiReplay attacks

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for key authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA keyAuth The authorization digest for inputs and owner
authorization. HMAC key: key.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2s 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditEventSigned

4 4 3s 4 TCPA_COMMAND_CODE cmdOrd Last audited command executed

5 4 4s 4 UINT32 cmdReturnCode Return code for cmdOrd

6 20 5s 20 TCPA_DIGEST auditDigest Log of all audited events

7 4 6s 4 UINT32 ordSize The size of the ordinal list

8 <> 7s <> BYTE[] ordinalList The list of ordinals that are being audited

9 4 8s 4 UINT32 sigSize The size of the sig parameter

10 <> 9s <> BYTE[] sig The signature of the area

11 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

TCPA Main Specification Page 234

Version 1.1a 1 December 2001

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSess
ion Continue use flag, TRUE if handle is still active

13 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth.

Actions
1. The TPM sets cmdOrd to the ordinal of the last audited function.

2. The TPM sets cmdReturnCode to the return code for the last audited function.

3. The TPM sets auditDigest to the extended digest value of all audited functions.

4. The TPM sets ordinalList to a list of all audited functions. This list is a UINT32 of command ordinals.

5. Create a d1 by taking the SHA1 of (ordinal || cmdOrd || cmdReturnCode || auditDigest || ordinalList ||
antiReplay)

6. Create a digital signature of d1 by using the signature scheme for keyHandle.

7. Return the signature in the sig parameter

TCPA Main Specification Page 235

Version 1.1a 1 December 2001

8.12.3 TPM_SetOrdinalAuditStatus
Start of informative comment:

Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.

End of informative comment.
Type
TCPA protected capability; the user must show authorization from the TPM Owner to execute the
command.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TCPA_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set

5 1 3S 1 BOOL auditState Value for audit flag

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Descriptions

Actions
1. The TPM authenticates the command using the TPM Owner authentication. If authentication

unsuccessful the TPM returns TCPA_FAIL.

TCPA Main Specification Page 236

Version 1.1a 1 December 2001

2. The TPM sets the state of the non-volatile flag for the given ordinal to the indicated state. The TPM
also returns the state in the response.

TCPA Main Specification Page 237

Version 1.1a 1 December 2001

8.12.4 TPM_GetOrdinalAuditStatus
Start of informative comment:

Get the status of the audit flag for the given ordinal.

End of informative comment.
Type
TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus

4 4 TCPA_COMMAND_CODE ordinalToQuery The ordinal whose audit flag is to be queried

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 1 BOOL State Value of audit flag for ordinalToQuery

Actions
The TPM returns the Boolean value for the given ordinal. The value is TRUE if the command is being
audited.

TCPA Main Specification Page 238

Version 1.1a 1 December 2001

8.12.5 Effect of audit failing after successful completion of a command
Start of informative comment:

An operation could complete successfully and then when the TPM attempts to audit the command the
audit process could have an internal error that forces the TPM to return an error.

This section indicates what the TPM must do in this case in addition to setting the state that requires the
TPM to return TPM_FAILEDSELFTEST

End of informative comment.
When after successful completion of an operation, and in performing the audit process, the TPM has an
internal failure (unable to write, SHA failure etc.) the TPM MUST set the internal TPM state such that the
TPM returns the TPM_FAILEDSELFTEST error. The TPM MUST return TCPA_AUDITFAILURE for the
current command.

If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST always return
TPM_FAILEDSELFTEST for every command other than TPM_GetTestResult. This state must persist
regardless of power cycling, the execution of TPM_Init or any other actions.

If the TPM can recover in any way after the failure of an audit operation, then the TPM MUST take the
actions stated in the following table after setting the failure state.

Ordinal Effect when Audit Fails

TPM_ORD_OIAP No action – session deleted on TPM_INIT
TPM_ORD_OSAP No action – session deleted on TPM_INIT
TPM_ORD_ChangeAuth No action – changed blob not returned so

nothing to delete
TPM_ORD_TakeOwnership TPM returns to state where there is no

TPM Owner.
TPM_ORD_ChangeAuthAsymStart No action – session deleted on TPM_INIT
TPM_ORD_ChangeAuthAsymFinish No action – session deleted on TPM_INIT
TPM_ORD_ChangeAuthOwner The TPM MUST revert back to the previous

authorization value

TPM_ORD_Extend Invalidate PCR by extending 20 bytes of
0xa5 to the PCR

TPM_ORD_PcrRead No action
TPM_ORD_Quote No action
TPM_ORD_Seal No action
TPM_ORD_Unseal Ensure that unsealed data is made

unavailable
TPM_ORD_DirWriteAuth Invalidate the DIR by writing 20 bytes

of 0xa5 into the specified DIR
TPM_ORD_DirRead No action

TPM_ORD_UnBind Ensure that unbound data is made
unavailable

TPM_ORD_CreateWrapKey No action – key not returned in blob so
TPM can just lose the new key

TPM_ORD_LoadKey Ensure that the key is not available
TPM_ORD_GetPubKey No action – nothing returned
TPM_ORD_EvictKey No action – key is evicted so no

security issues

TPM_ORD_CreateMigrationBlob No action – no blob returned

TCPA Main Specification Page 239

Version 1.1a 1 December 2001

TPM_ORD_ReWrapKey No action – no blob returned
TPM_ORD_ConvertMigrationBlob No action – no blob returned
TPM_ORD_AuthorizeMigrationKey No action – no blob returned
TPM_ORD_CreateMaintenanceArchive No action – no blob returned
TPM_ORD_LoadMaintenanceArchive Set the TPM internal state such that the

TPM returns TPM_NOSRK. This requires the
caller to resubmit the maintenance
archive for it to be active.

TPM_ORD_KillMaintenanceFeature No action
TPM_ORD_LoadManuMaintPub The TPM returns to a state where no

maintenance public key has been loaded
TPM_ORD_ReadManuMaintPub No action – no blob returned

TPM_ORD_CertifyKey No action – no blob returned

TPM_ORD_Sign No action – no blob returned

TPM_ORD_GetRandom No action – nothing returned
TPM_ORD_StirRandom No action – RNG still secure

TPM_ORD_SelfTestFull No action
TPM_ORD_SelfTestStartup No action
TPM_ORD_CertifySelfTest No action
TPM_ORD_ContinueSelfTest No action
TPM_ORD_GetTestResult No action

TPM_ORD_Reset No action
TPM_ORD_OwnerClear No action
TPM_ORD_DisableOwnerClear No action
TPM_ORD_ForceClear No action
TPM_ORD_DisableForceClear No action

TPM_ORD_GetCapabilitySigned No action
TPM_ORD_GetCapability No action
TPM_ORD_GetCapabilityOwner No action

TPM_ORD_OwnerSetDisable No action
TPM_ORD_PhysicalEnable No action
TPM_ORD_PhysicalDisable No action
TPM_ORD_SetOwnerInstall No action
TPM_ORD_PhysicalSetDeactivated No action
TPM_ORD_SetTempDeactivated No action

TPM_ORD_CreateEndorsementKeyPair This is a dead TPM. It has failed it’s
startup smoke test. It should not leave
the factory floor.

TPM_ORD_MakeIdentity No action – blob not returned so key is
lost

TPM_ORD_ActivateIdentity No action – credential not returned but
blob is still available for the caller
to resubmit to the TPM when it is
functional

TPM_ORD_ReadPubek No action
TPM_ORD_OwnerReadPubek No action
TPM_ORD_DisablePubekRead No action

TCPA Main Specification Page 240

Version 1.1a 1 December 2001

TPM_ORD_GetAuditEvent No action
TPM_ORD_GetAuditEventSigned No action

TPM_ORD_GetOrdinalAuditStatus No action
TPM_ORD_SetOrdinalAuditStatus No action

TPM_ORD_Terminate_Handle No action
TPM_ORD_Init No action
TPM_ORD_SaveState No action
TPM_ORD_Startup No action – The TPM is disabled, all

save states are invalidated so only non-
volatile keys are left.

TPM_ORD_SetRedirection No action

TPM_ORD_SHA1Start No action
TPM_ORD_SHA1Update No action
TPM_ORD_SHA1Complete No action
TPM_ORD_SHA1CompleteExtend No action

TPM_ORD_FieldUpgrade Set TCPA_PERSISTENT_FLAGS ->
FailedFieldUpgrade to TRUE. This flag
sets the disabled bit to TRUE on each
TPM_Init. The only way to set the
FailedFieldUpgrade flag back to FALSE is
to successfully complete a FieldUpgrade.

TCPA Main Specification Page 241

Version 1.1a 1 December 2001

8.13 Enabling Ownership
Informative comment
The purpose of these capabilities is to enable and disable the process of taking ownership of a TPM.

The process of enabling and disabling ownership uses a non-volatile flag TCPA_PERSISTENT_FLAGS -
> ownership. If the TCPA_PERSISTENT_FLAGS -> ownership flag is FALSE, the TPM will not permit the
“take ownership” command to operate. If the flag is TRUE, it has no effect on any other capability. See
section 4.13.1 for the TCPA_PERSISTENT_FLAGS -> ownership flag.

This enable-Ownership command on its own does not provide the necessary privacy controls for a TPM.
It should be considered together with the operation of the enable/disable commands of section 8.14 and
the activate/deactivate commands of section 8.15. The activate/deactivate commands are weaker forms
of the enable/disable commands, in that they permit the process of taking Ownership of a TPM. The
enable-Ownership, enable/disable, and activate/deactivate commands together permit the taking of TPM
Ownership without the risk of inadvertent use of a TPM. See section 2.6.

Physical presence authorizes the changing of the TCPA_PERSISTENT_FLAGS -> ownership flag.

A remote entity must not be able to change the setting of the TCPA_PERSISTENT_FLAGS -> ownership
flag without the collusion of someone present at the platform.

End of informative comment.

TCPA Main Specification Page 242

Version 1.1a 1 December 2001

8.13.1 TPM_SetOwnerInstall
Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

4 1 BOOL state State to which ownership flag is to be set.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
1. If the TPM has a current owner, this command immediately returns with TCPA_SUCCESS.

2. The TPM validates the assertion of physical access. The TPM then sets the value of
TCPA_PERSISTENT_FLAGS -> ownership to the value in state.

TCPA Main Specification Page 243

Version 1.1a 1 December 2001

8.14 Enabling a TPM
Informative comment
The purpose of these capabilities is to enable and disable a TPM without destroying secrets protected by
the TPM.

The process of enabling and disabling a TPM uses the non-volatile TCPA_PERSISTENT_FLAGS.disable
flag. When set to TRUE, the TPM will reject most commands. Note, however, that a disabled TPM never
disables the “extend” capability. This is necessary in order to ensure that the PCR values in a TPM are
always up-to-date. If the flag is FALSE, it has no effect on other capabilities. See section 4.13.1 for the full
effects of the TCPA_PERSISTENT_FLAGS.disable flag.

These enable/disable commands on their own do not provide the necessary privacy controls for a TPM.
They should be considered together with the operation of the enable_ownership command of section
8.12.5 and the activate/deactivate commands of section 8.15. The activate/deactivate commands are
weaker forms of the enable/disable commands, in that they permit the process of taking Ownership of a
TPM. The enable-Ownership, enable/disable, and activate/deactivate commands together permit the
taking of TPM Ownership without the risk of inadvertent use of a TPM. See section 2.6.

There are two mechanisms to change the status of the TCPA_PERSISTENT_FLAGS.disable flag. The
first mechanism is by using the owner-authenticated command TPM_OwnerSetDisable. The second uses
the two commands TPM_PhysicalEnable and TPM_PhysicalDisable. These two commands require the
assertion of physical presence. TPM_PhysicalEnable must be incapable of subversion by software.

End of informative comment.

TCPA Main Specification Page 244

Version 1.1a 1 December 2001

8.14.1 TPM_OwnerSetDisable
Type

TCPA protected capability; the TPM Owner must provide authorization.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 1 2S 1 BOOL disableState Value for disable state – enable if TRUE

5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

6 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Action
1. The TPM SHALL authenticate the command as coming from the TPM Owner. If unsuccessful, the

TPM SHALL return TCPA_BAD_AUTH.

2. The TPM SHALL set the TCPA_PERSISTENT_FLAGS -> disable flag to the value in the disableState
parameter.

TCPA Main Specification Page 245

Version 1.1a 1 December 2001

8.14.2 TPM_PhysicalDisable
Type
TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to TRUE. The TPM while executing
this command MUST obtain assurance from a physical method that operation of this command is
authorized.

The TPM manufacturer MAY implement this command not as a response to a message block but as a
response to a physical action, for instance, the acceptance of a special bus cycle or setting a pin high.

TCPA Main Specification Page 246

Version 1.1a 1 December 2001

8.14.3 TPM_PhysicalEnable
Type
TCPA protected capability; there MUST be unambiguous evidence of the presence of physical access to
the platform for the TPM to verify.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnablel

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to FALSE.

In order to execute this command, the TPM MUST obtain unambiguous assurance that operation of this
command is authorized by physical presence at the platform. The command MAY be initiated by the
presentation to a TPM of a message block with the above input parameters, provided that the message
block occurs while the TPM is presented with unambiguous assurance that operation of this command is
authorized by physical presence at the platform.

Unambiguous assurance that operation of this command is authorized by a physical action at the platform
MAY be communicated to a TPM using a special bus cycle that is impossible for software to create, or
asserting a single electrical signal that is impossible for software to create, for example.

It SHALL be impossible to subvert this command to a TPM by the execution of instructions in a computing
engine on the platform.

TCPA Main Specification Page 247

Version 1.1a 1 December 2001

8.15 Activating a TPM
Informative comment
The purpose of these capabilities is to activate and deactivate a TPM without destroying secrets
protected by the TPM. This is subtly different from enabling and disabling a TPM.

An inactive TPM permits more commands to operate than does a disabled TPM. In particular, an inactive
TPM does not block the enabling/disabling of a TPM and the process of taking ownership of the TPM. An
inactive TPM never prevents the “extend” capability from operating. This is necessary in order to ensure
that the PCR values in a TPM are always up-to-date.

These activate/deactivate commands on their own do not provide the necessary privacy controls for a
TPM. They should be considered together with the operation of the enable_Ownership commands of
section 8.12.5 and the enable/disable commands of section 8.14. The enable/disable commands are
stronger forms of the activate/deactivate commands, in that they do not permit the process of taking
Ownership of a TPM. The enable-Ownership, enable/disable, and activate/deactivate commands together
permit the taking of TPM Ownership without the risk of inadvertent use of a TPM. See section 2.6.

There are TWO deactivated flags, one volatile and one non-volatile. At switch-on, the volatile flag is set to
the same state as the non-volatile flag. Altering the non-volatile flag requires physical presence at the
platform. The volatile flag can be set without authentication, but its effect lasts only until the platform is
rebooted.

See section 4.13.1 for the full effect of the TCPA_PERSISTENT_FLAGS.deactivated flag. See section
4.13.3 for the full effects of the TCPA_VOLATILE_FLAGS.deactivated flag.

End of informative comment.

TCPA Main Specification Page 248

Version 1.1a 1 December 2001

8.15.1 TPM_PhysicalSetDeactivated
Type

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

4 1 BOOL state State to which deactivated flag is to be set.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
The TPM while executing this command MUST obtain assurance from a physical method that operation
of this command is authorized.

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.deactivated flag to the value in the state
parameter.

TCPA Main Specification Page 249

Version 1.1a 1 December 2001

8.15.2 TPM_SetTempDeactivated
Type

TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
The TPM SHALL set the TCPA_VOLATILE_FLAGS.deactivated flag to the value TRUE.

TCPA Main Specification Page 250

Version 1.1a 1 December 2001

8.16 TPM_FieldUpgrade
Start of informative comment:
The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is in the field.
Given the varied nature of TPM implementations there will be numerous methods of performing an
upgrade of the protected capabilities. This command, when implemented, provides a manufacturer
specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this command. The
command may be more than one command and actually a series of commands.

The IDL definition is to create an ordinal for the command, however the remaining parameters are
manufacturer specific.

End of informative comment.
IDL Definition
TCPA_RESULT TPM_FieldUpgrade(

[in, out] TCPA_AUTH* ownerAuth,
…);

Type

TCPA protected capability; the TPM Owner must authenticate the command. This is an optional
command and a TPM is not required to implement this command in any form.

Parameters

Type Name Description

TCPA_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Actions
The TPM SHALL perform the following when executing the command:

1. Validate the TPM Owners authorization to execute the command

2. Validate that the upgrade information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed
using a 2048 bit RSA key.

3. Validate that the upgrade target is the appropriate TPM model and version.

4. Process the upgrade information and update the protected capabilities

5. Set the TCPA_PERSISTENT_DATA.revMajor and TCPA_PERSISTENT_DATA.revMinor to the
values indicated in the upgrade. The selection of the value is a manufacturer option. The values
MUST be monotonically increasing. Installing an upgrade with a major and minor revision that is less
than currently installed in the TPM is a valid operation.

6. Set the TCPA_VOLATILE_FLAGS.deactivated to TRUE.

Descriptions

The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field
upgrade. The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade
process. The upgrade process MAY use a TPM Identity to deliver upgrade information to specific TPM’s.

TCPA Main Specification Page 251

Version 1.1a 1 December 2001

The upgrade process can only change protected capabilities.

The upgrade process can only access data in shielded locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

TCPA Main Specification Page 252

Version 1.1a 1 December 2001

8.17 TPM_SetRedirection
Informative comment
‘Redirected” keys enable the output of a TPM to be directed to non-TCPA security functions in the
platform, without exposing that output to non-security functions.

It is sometimes desirable to direct the TPM’s output directly to specific platform functions without exposing
that output to other platform functions. To enable this, the key in a leaf node of TCPA Protected Storage
can be tagged as a “redirect” key. Any plaintext output data secured by a redirected key is passed by the
TPM directly to specific platform functions and is not interpreted by the TPM.

Since redirection can only affect leaf keys, redirection applies to: TPM_Unbind, TPM_Unseal,
TPM_Quote, TPM_Sign

End of informative comments
Type

TCPA protected capability; the TPM MAY implement this command. The user MUST supply authorization
to use the key pointed to by keyHandle.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of
TPM_ORD_SetRedirection

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can
implement redirection.

5 4 2S 4 UINT32 C1 Manufacturer parameter

6 4 3S 4 UINT32 C2 Manufacturer parameter

7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle
authorization

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the use of
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

TCPA Main Specification Page 253

Version 1.1a 1 December 2001

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: key.usageAuth

Action
1. The TPM SHALL validate the authorization to use the key pointed to by keyHandle.

2. The TPM SHALL verify that the key pointed to by keyHandle has the redirection flag set to TRUE. If
FALSE the TPM SHALL return TCPA_FAIL.

3. The TPM SHALL set the key handle redirection parameters according to the values in parameters c1
and c2.

4. A key that is tagged as a “redirect” key MUST be a leaf key in the TCPA Protected Storage blob
hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key.

5. Ouput data that is the result of a cryptographic operation using the private portion of a “redirect” key:

a. MUST be passed to an alternate output channel

b. MUST NOT be passed to the normal output channel

c. MUST NOT be interpreted by the TPM.

6. The authorization response returns to the caller.

TCPA Main Specification Page 254

Version 1.1a 1 December 2001

8.18 Key and Session Management
Start of informative comment:
To alleviate limited temporary key storage within a TPM, a key and its related context information can be
cached outside the TPM. The cached key will be exported from the TPM inside a key context blob that is
opaque data outside the TPM.

For the protection of the key context blob either a symmetric or an asymmetric cryptographic algorithm
can be used. It is the responsibility of the TPM to assure the confidentiality and integrity of a key context
blob.

Other key management commands can be implemented, but cannot touch data in TCPA shielded-
locations

End of informative comment.

TCPA Main Specification Page 255

Version 1.1a 1 December 2001

8.18.1 TPM_SaveKeyContext
Start of informative comment:

SaveKeyContext saves a loaded key outside the TPM. After creation of the key context blob the TPM
automatically releases the internal memory used by that key. The format of the key context blob is
specific to a TPM.

End of informative comment.

Type
TCPA optional function; TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveKeyContext

4 4 TCPA_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 keyContextSize The actual size of the outgoing key context blob. If the
command fails the value will be 0

5 <> BYTE[] keyContextBlob The key context blob.

Description

This command allows saving a loaded key outside the TPM. After creation of the KeyContextBlob, the
TPM automatically releases the internal memory used by that key. The format of the key context blob is
specific to a TPM.

A TCPA protected capability belonging to the TPM that created a key context blob MUST be the only
entity that can interpret the contents of that blob. If a cryptographic technique is used for this purpose, the
level of security provided by that technique SHALL be at least as secure as a 2048 bit RSA algorithm.
Any secrets (such as keys) used in such a cryptographic technique MUST be generated using the TPM’s
random number generator. Any symmetric key MUST be used within the power-on session during which it
was created, only.

A key context blob SHALL enable verification of the integrity of the contents of the blob by a TCPA
protected capability.

A key context blob SHALL enable verification of the session validity of the contents of the blob by a TCPA
protected capability. The method SHALL ensure that all key context blobs are rendered invalid if power to
the TPM is interrupted.

TCPA Main Specification Page 256

Version 1.1a 1 December 2001

8.18.2 TPM_LoadKeyContext
Start of informative comment:

LoadKeyContext loads a key context blob into the TPM previously retrieved by a SaveKeyContext call.
After successful completion the handle returned by this command can be used to access the key.

End of informative comment.
Type
TCPA optional function; TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadKeyContext

4 4 UINT32 keyContextSize The size of the following key context blob.

5 <> BYTE[] keyContextBlob The key context blob.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_KEY_HANDLE keyHandle The handle assigned to the key after it has been
successfully loaded.

Description

This command allows loading a key context blob into the TPM previously retrieved by a
TPM_SaveKeyContext call. After successful completion the handle returned by this command can be
used to access the key.

The contents of a key context blob SHALL be discarded unless the contents have passed an integrity
test. This test SHALL (statistically) prove that the contents of the blob are the same as when the blob was
created.

The contents of a key context blob SHALL be discarded unless the contents have passed a session
validity test. This test SHALL (statistically) prove that the blob was created by this TPM during this power-
on session.

TCPA Main Specification Page 257

Version 1.1a 1 December 2001

8.19 Authorization Context Management
Start of informative comment:
To alleviate limited temporary authorization session storage within a TPM, an authorization handle and its
related context information can be cached outside the TPM. The cached authorization context will be
exported from the TPM inside an authorization context blob that is opaque data outside the TPM.

For the protection of the authorization context blob either a symmetric or an asymmetric cryptographic
algorithm can be used. It is the responsibility of the TPM to assure the confidentiality and integrity of a key
context blob.

Other Authorization context commands can be implemented, but cannot touch data in TCPA shielded-
locations

End of informative comment.

TCPA Main Specification Page 258

Version 1.1a 1 December 2001

8.19.1 TPM_SaveAuthContext
Start of informative comment:

SaveAuthContext saves a loaded authorization session outside the TPM. After creation of the
authorization context blob, the TPM automatically releases the internal memory used by that session. The
format of the authorization context blob is specific to a TPM.

End of informative comment.

Type
TCPA optional function; TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveAuthContext

4 4 TCPA_AUTHHANDLE authandle Authorization session which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 authContextSize The actual size of the outgoing authorization context blob. If the
command fails the value will be 0.

5 <> BYTE[] authContextBlob The authorization context blob.

Description

This command allows saving a loaded authorization session outside the TPM. After creation of the
authContextBlob, the TPM automatically releases the internal memory used by that session. The format
of the authorization context blob is specific to a TPM.

A TCPA protected capability belonging to the TPM that created an authorization context blob MUST be
the only entity that can interpret the contents of that blob. If a cryptographic technique is used for this
purpose, the level of security provided by that technique SHALL be at least as secure as a 2048 bit RSA
algorithm. Any secrets (such as keys) used in such a cryptographic technique MUST be generated using
the TPM’s random number generator. Any symmetric key MUST be used within the power-on session
during which it was created, only.

An authorization context blob SHALL enable verification of the integrity of the contents of the blob by a
TCPA protected capability.

An authorization context blob SHALL enable verification of the session validity of the contents of the blob
by a TCPA protected capability. The method SHALL ensure that all authorization context blobs are
rendered invalid if power to the TPM is interrupted.

TCPA Main Specification Page 259

Version 1.1a 1 December 2001

8.19.2 TPM_LoadAuthContext
Start of informative comment:

LoadAuthContext loads an authorization context blob into the TPM previously retrieved by a
SaveAuthContext call. After successful completion the handle returned by this command can be used to
access the authorization session.

End of informative comment.
Type
TCPA optional function; TCPA protected capability.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadAuthContext

4 4 UINT32 authContextSize The size of the following authorization context blob.

5 <> BYTE[] authContextBlob The authorization context blob.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_KEY_HANDLE authHandle The handle assigned to the authorization session after it has
been successfully loaded.

Description

This command allows loading an authorization context blob into the TPM previously retrieved by a
TPM_SaveAuthContext call. After successful completion the handle returned by this command can be
used to access the authorization session.

The contents of an authorization context blob SHALL be discarded unless the contents have passed an
integrity test. This test SHALL (statistically) prove that the contents of the blob are the same as when the
blob was created.

The contents of an authorization context blob SHALL be discarded unless the contents have passed a
session validity test. This test SHALL (statistically) prove that the blob was created by this TPM during
this power-on session.

TCPA Main Specification Page 260

Version 1.1a 1 December 2001

9. Subsystem Credentials

9.1 Introduction
Start of informative comment:

This section defines the credentials by which various entities vouch for a Trusted Platform, plus the
Subsystem capabilities that are used during the creation of those credentials.

End of informative comment.

All credentials MUST use the TCPA_VERSION structure.

9.2 Endorsement
Start of informative comment:

A TPM only has one asymmetric endorsement key pair. Due to the nature of this key pair, both the public
and private parts of the key have privacy and security concerns.

Exporting the PRIVEK from the TPM must not occur. This is for security reasons. The PRIVEK is a
decryption key and never performs any signature operations.

Exporting the public PUBEK from the TPM under controlled circumstances is allowable. Access to the
PUBEK must be restricted to entities that have a “need to know.” This is for privacy reasons.

The PUBEK is tagged with TCPA_VERSION to indicate the version of the capability that created the key
at the time that the key was generated. This may be useful in the event that capabilities are field-
upgraded.

Repeated access to the PUBEK of a TPM is desirable in the process of manufacturing TPMs and
platforms. Unfortunately, repeated access to the PUBEK is a security concern (because the PUBEK is
used to acquire ownership of the TPM) and may be a privacy concern.

The first call to TPM_CreateEndorsementKeyPair generates the endorsement key pair. After a successful
completion of TPM_CreateEndorsementKeyPair all subsequent calls return TCPA_FAIL.

The TPM_ReadPubek returns the PUBEK only while the readPubek flag is TRUE. The owner can set the
readPubek flag with an owner authorized command. In order to increase confidence that the PUBEK
returned is in response to the command a simple challenge/response is built into the call to
TPM_ReadPubek. The command returns a hash of a submitted nonce and the PUBEK.

End of informative comment.

The PRIVEK and PUBEK MUST be accessed only by protected capabilities whose definition explicitly
requires access to those keys.

The PRIVEK and PUBEK MAY be created by a process other than the use of
TPM_CreateEndorsementKeyPair. If so, the process MUST result in a TPM and endorsement key whose
properties are the same as those of a genuine TPM and an endorsement key created by execution of
TPM_CreateEndorsementKeyPair in that TPM.

• The process MUST result in the same TPM state as that created by execution of
TPM_CreateEndorsementKeyPair.

• The process MUST guarantee correct generation, cryptographic strength, uniqueness, privacy,
and installation into a genuine TPM, of the endorsement key.

• The TPME, when creating the Endorsement Certificate, MUST be satisfied that the described
endorsement key does exist in a genuine TPM and was installed by a process that met or
exceeded the assurances provided by a genuine TPM performing
TPM_CreateEndorsementKeyPair.

• The process MUST be defined in the TOE of the security target in use to evaluate the TPM

TCPA Main Specification Page 261

Version 1.1a 1 December 2001

9.2.1 TPM_CreateEndorsementKeyPair
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 20 TCPA_NONCE antiReplay Arbitrary data

5 <> TCPA_KEY_PARMS keyInfo Information about key to be created, this includes all
algorithm parameters

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 <> TCPA_PUBKEY pubEndorsementKey The public endorsement key

5 20 TCPA_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description

Type Name Description

TCPA_STORE_A
SYMKEY

PRIVEK This SHALL be the private key of the endorsement key pair.

TCPA_PUBKEY PUBEK This SHALL be the public key of the endorsement key pair.

The PRIVEK SHALL exist only in a TCPA-shielded location.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Actions
The first valid TPM_CreateEndorsementKeyPair command received by a TPM SHALL

1. Validate the keyInfo parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For
interoperability the key length SHOULD be 2048

TCPA Main Specification Page 262

Version 1.1a 1 December 2001

b. If the algorithm type is other than RSA the strength provided by the key MUST be
comparable to RSA 2048

c. The other parameters of keyInfo (signatureScheme etc.) are ignored.

2. Create a key pair called the “endorsement key pair” using a TCPA-protected capability. The type and
size of key are that indicated by keyInfo

3. Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay)

4. Store the PRIVEK.

5. Export the data structures PUBEK and checksum

6. Set TCPA_PERSISTENT_FLAGS -> CEKPUsed to TRUE

Subsequent calls to TPM_CreateEndorsementKeyPair SHALL return code TCPA_FAIL.

TCPA Main Specification Page 263

Version 1.1a 1 December 2001

9.2.2 TPM_ReadPubek
Type
TCPA protected capability
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 20 TCPA_NONCE antiReplay Arbitrary data

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 <> TCPA_PUBKEY pubEndorsementKey The public endorsement key

5 20 TCPA_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description

This command returns the PUBEK.

Actions
The TPM_ReadPubek command SHALL

1. If TCPA_PERSISTENT_FLAGS -> readPubek is FALSE return TCPA_DISABLED_CMD.

2. If no EK is present the TPM MUST return TCPA_NO_ENDORSEMENT

3. Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay).

4. Export the PUBEK and checksum.

TCPA Main Specification Page 264

Version 1.1a 1 December 2001

9.2.3 TPM_DisablePubekRead
Start of informative comment:

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command sets the non-
volatile flag so that the TPM_ReadPubek command always returns TCPA_DISABLED_CMD.

End of informative comment.
Type
TCPA protected capability; the user must present authorization from the TPM Owner.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

5 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Actions
This capability sets the TCPA_PERSISTENTFLAGS -> readPubek flag to FALSE.

TCPA Main Specification Page 265

Version 1.1a 1 December 2001

9.2.4 TPM_OwnerReadPubek
Type
TCPA protected capability; caller must supply authorization from the TPM Owner
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H1 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

5 20 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner
authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 <> 3S <> TCPA_PUBKEY pubEndorsementKey The public endorsement key

5 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Description

This command returns the PUBEK.

Actions
The TPM_ReadPubek command SHALL

1. Validate the TPM Owner authorization to execute this command

2. Export the PUBEK

TCPA Main Specification Page 266

Version 1.1a 1 December 2001

9.3 Generating a Trusted Platform Module Identity
Start of informative comment:
The purpose of TPM_MakeIdentity is to create

• an asymmetric key pair within the Trusted Platform Module and

• evidence that the key pair is bound to a label.

Only the Owner of the TPM has the privilege of creating a TPM identity. (An identity is not activated until
the reception of the command TPM_ActivateIdentity.)

TPM_MakeIdentity communicates new authorization data to the TPM using almost the same process as
Protected Storage uses to communicate new authorization data for blobs. Both processes require the
creation of a TPM_OSAP session and the use of the session’s shared secret to XOR the new
authorization data. The requirement for TPM_MakeIdentity is that the TPM_OSAP session must start with
the TPM Owner authorization.

The authorization data will provide the ability to associate authorization sessions with the new identity in
the future. The protection of the authorization data comes from the XOR having a one-time pad nature to
it. If an attacker can determine the shared secret of the TPM_OSAP session then the attacker can learn
the new value of the authorization data. For the case of identities, the owner is always the SRK, which in
many cases has well-known authorization data. This would allow an attacker to determine what the
shared secret was and hence what the value of the new authorization data is.

To avoid the problem with the SRK, the TPM_MakeIdentity command requires the TPM_OSAP session to
use the TPM Owner as the authorization to establish the session. This creates a shared secret that only
the TPM Owner and the TPM know and allows the proper protections when using the XOR for encryption.

A tpm_signature_key must be known only to the TPM.

Identity_binding uses the private (signature) key of a TPM identity. The private (signature) key of a TPM
identity is available only to selected commands. Its use enables a recipient to be certain that
identity_binding was generated inside a TPM. This feature prevents a rogue Owner from assembling
identity_binding data structures outside the TPM and hence obtaining attestation to the same TPM
identity from multiple Privacy CAs.

Identity_binding is tagged with TCPA_VERSION so as to indicate the version of the capability that
created the identity_binding at the time that identity_binding was generated. This may be useful in the
event that capabilities are field-upgraded.

The algorithm parameter indicates the type of encryption algorithm in use for the TPM identity. It may
indicate RSA, or ECC, to give two examples. The algorithm parameter indicates the parameters that are
necessary for the particular encryption algorithm in use. For RSA, these parameters are just the length of
the RSA key.

The PKI identity protocol enables a Trusted Platform Module to have multiple identities. Each identity may
have attestation from exactly one Privacy CA.

TCPA Main Specification Page 267

Version 1.1a 1 December 2001

The TPM creates an identity-binding signature (the value of a signature over the
TCPA_IDENTITY_CONTENTS structure). Among other things, this proves possession of the new private
key, which does the signing of the TCPA_IDENTITY_CONTENTS structure. The Subsystem sends the
signature along with evidence of a genuine TPM and the platform the TPM resides on to a Privacy CA.
The encryption of the request is to provide privacy not security.

The Privacy CA inspects the evidence and concurs that the TPM is genuine and in a valid platform. The
Privacy CA validates the signature of the TCPA_IDENTITY_CONTENTS structure and verifies that it was
signed using the private key corresponding to the public key in the identity request. The
TCPA_IDENTITY_CONTENTS structure includes a hash of the Privacy CA’s public key. The Privacy CA
obtains assurance that it (and not some other Privacy CA) is the target of the request to provide the
identity attestation.

The Privacy CA cannot check that the public key inside identity-binding signature belongs to a genuine
TPM, but it knows that the TPM described in the evidence is a genuine TPM. The Privacy CA generates
the attestation credential and encrypts the credential for decryption by the requesting TPM. The Privacy
CA also sends the genuine TPM a “statement” that the credential attests to a particular public key (the
one in the identity-credential).

The TPM receives the encrypted data. It cannot parse the credential, but it can check that the credential
attests to one of its public keys, by checking the “statement” from the Privacy CA. Only if the credential
relates to one of the TPM’s public keys does the TPM enable recovery of the credential.

The presumption is that the Privacy CA is trustworthy. This must be the case for the acceptance of the
attestation by a third party. Hence, if the attestation is worth having, the “statement” from the Privacy CA
to the TPM can be trusted. Hence, the TPM “knows” that the encrypted credential relates to the public key
in the “statement.” The Privacy CA has ensured that only a genuine TPM can recover the encrypted
credential and statement and that a genuine TPM will enable recovery of the credential only if the
credential is associated with a public key belonging to the TPM.

A rogue can certainly pose as a Privacy CA and cause the TPM to release the credential created by that
rogue. But who will trust the attestation provided by that rogue? A trustworthy credential can be recovered
only if it attests to a public key of a genuine TPM, because the Privacy CA that created the credential can

Obtaining a TPM identity

session_key_2

identity binding

Privacy
CA

TPM SS OwnerPrivacy
CA

TPM SS Owner
TPM_identity_credentials

E(P_CA_identity, session-key_1)
E(session_key_1, TPM-identity-key,
id-label, alg-id, alg-param, identity_binding,
endorsement-cred, platform-cred,
conformance-cred)

contact_privacy_CA

1

2

3

4

5

1

2

3

4

5

make_TPM identity(P_CA_identity,
id-label, identity_authorisation, alg_id, alg_param)

collate_identity_request(….)

activate_TPM_identity (
E(endorsement_key,digest(id-key), session_key_2))

recover_TPM_identity(session_key_2,
E(session_key_2, TPM_identity_credentials))

TCPA Main Specification Page 268

Version 1.1a 1 December 2001

be trusted to check that a TPM is genuine and to correctly state that a credential describes a particular
public key, and a genuine TPM checks that the public key belongs to that TPM before releasing the
credential.

The reason for including the hash of the public key of the Privacy CA inside identity-binding signature is to
prevent a rogue obtaining attestation from multiple Privacy CAs. The identity-binding signature creation is
an atomic operation performed at the same time as the key pair creation, and therefore the TPM cannot
be coerced into creating a version of the identity-binding signature with the same keys but a different
Privacy CA public key.

The Identity-binding signature is one of the few operations that are permitted to use the private
(signature) key of a TPM identity. A version of identity_binding with a different Privacy CA public key can't
be reproduced by commands from outside the TPM, because the TPM will refuse to sign arbitrary data
with a private (signature) key of a TPM identity.

The process deliberately has certain characteristics:

For example, during TPM_MakeIdentity,

• The atomic generation of the key pair and encrypted identity_binding information prevents the
creation by a TPM of duplicate identity_binding information while avoiding the need for a TPM to
retain state.

• Signing with the private (signature) key of a TPM identity prevents the creation of duplicate
“identity_binding” information outside a TPM.

• When a Privacy CA receives data, it can use the data describing the new TPM identity to check that
the request for attestation (if it came from a genuine TPM) is a unique request, use the endorsement
credentials to check that a stated TPM is a genuine TPM, and use the platform credentials and
conformance credentials to check that a stated platform is a genuine Trusted Platform. The Privacy
CA cannot, however, verify that the new TPM identity was actually generated by that genuine TPM.
On the assumption, however, that the new TPM identity was actually generated by a genuine TPM,
the Privacy CA generates TPM_IDENTITY_CREDENTIALs and a statement that expresses a binding
between that TPM_IDENTITY_CREDENTIAL and the new TPM identity. The Privacy CA then
encrypts this information so that it can be recovered only by the genuine TPM described by the
endorsement credentials.

• During TPM_ActivateIdentity, the genuine TPM checks that the encrypted
TPM_IDENTITY_CREDENTIAL is bound to one of the TPM’s identities and enables decryption of
TPM_IDENTITY_CREDENTIAL only if that association exists. This last stage is critical but subtle,
since the TPM has insufficient computing power to parse TPM_IDENTITY_CREDENTIAL and relies
on the “statement” from the Privacy CA that a TPM_IDENTITY_CREDENTIAL is associated with a
given identity.

• The entire process depends critically on the trustworthiness of the Privacy CA. If the Privacy CA is
trustworthy, a plaintext TPM_IDENTITY_CREDENTIAL recovered by a TPM describes an identity of
a genuine TPM. Otherwise, a TPM_IDENTITY_CREDENTIAL cannot be trusted. The Privacy CA
must be trusted to make TPM_IDENTITY_CREDENTIAL only if the request for attestation is a unique
request and the stated TPM and platform are genuine. The Privacy CA must be trusted never to
reveal a plaintext copy of TPM_IDENTITY_CREDENTIAL and to be truthful when stating that a
particular TPM_IDENTITY_CREDENTIAL is associated with a particular identity.

End of informative comment.

TCPA Main Specification Page 269

Version 1.1a 1 December 2001

9.3.1 TPM_MakeIdentity
Type
TCPA protected capability; user must provide authorizations from the TPM Owner and the SRK.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MakeIdentity.

4 20 2S 20 TCPA_ENCAUTH identityAuth Encrypted usage authorization data for the new identity

5 20 3S 20 TCPA_CHOSENID_HASH labelPrivCADigest The digest of the identity label and privacy CA chosen
for the new TPM identity. (See 10.4.6 for details)

6 <> 4S <> TCPA_KEY idKeyParams Structure containing all parameters of new identity key.
pubKey.keyLength & idKeyParams.encData are both 0

7 4 TCPA_AUTHHANDLE srkAuthHandle The authorization handle used for SRK authorization.

 2 H1 20 TCPA_NONCE srkLastNonceEven Even nonce previously generated by TPM

8 20 3 H1 20 TCPA_NONCE srknonceOdd Nonce generated by system associated with
srkAuthHandle

9 1 4 H1 1 BOOL continueSrkSession Ignored

10 20 TCPA_AUTHDATA srkAuth The authorization digest for the inputs and the SRK.
HMAC key: srk.usageAuth.

11 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
Session type MUST be OSAP.

 2 H2 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

12 20 3 H2 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

13 1 4 H2 1 BOOL continueAuthSession Ignored

14 20 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC
key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal:TPM_ORD_MakeIdentity.

4 <> 3S <> TCPA_KEY idKey The newly created identity key

TCPA Main Specification Page 270

Version 1.1a 1 December 2001

5 4 4S 4 UINT32 identityBindingSize The used size of the output area for identityBinding

6 <> 5S <> BYTE[] identityBinding Signature of TCPA_IDENTITY_CONTENTS using
idKey.private.

7 20 2 H2 20 TCPA_NONCE srkNonceEven Even nonce newly generated by TPM.

 3 H2 20 TCPA_NONCE srknonceOdd Nonce generated by system associated with
srkAuthHandle

8 1 4 H2 1 BOOL continueSrkSession Fixed value FALSE

9 20 TCPA_AUTHDATA srkAuth The authorization digest used for the outputs and srkAuth
session. HMAC key: srk.usageAuth.

10 20 2 H1 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4 H1 1 BOOL continueAuthSession Fixed value FALSE

12 20 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Description
The command TPM_MakeIdentity is used to generate an identity in a TPM and to request attestation to
that identity.

The public key of the new TPM identity SHALL be identityPubKey. The private key of the new TPM
identity SHALL be tpm_signature_key.

This command requires XOR encryption of the authorization to use the new identity. To create an XOR
string, the caller takes the OSAP session shared secret, concatenates it with authLastNonceEven, and
then hashes the result. This hash encrypts the authorization value and produces identityAuth.

Properties of the new identity

Type Name Description

TCPA_PUBKEY identityPubKey This SHALL be the public key of a previously unused
asymmetric key pair.

TCPA_STORE_ASY
MKEY

tpm_signature_key This SHALL be the private key that forms a pair with
identityPubKey and SHALL be extant only in a TCPA-
shielded location.

This capability also generates a TCPA_KEY containing the tpm_signature_key.

If identityPubKey is stored on a platform after an Owner has taken ownership of that platform, it SHALL
exist only in storage to which access is controlled and is available to authorized entities.

Actions
A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the following:

1. Validate the idKeyParams parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For
interoperability the key length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be
comparable to RSA 2048

TCPA Main Specification Page 271

Version 1.1a 1 December 2001

2. Use authHandle to verify that the Owner authorized all TPM_MakeIdentity input parameters.

3. Use srkAuthHandle to verify that the SRK owner authorized all TPM_MakeIdentity input parameters.

4. Verify that idKeyParams -> keyUsage is TPM_KEY_IDENTITY. If it is not, return
TCPA_BAD_PARAMETER"

5. Verify that idKeyParams -> keyFlags -> migratable is FALSE. If it is not, return
TCPA_BAD_PARAMETER"

6. Obtain the identity_authorization to be associated with the new TPM identity, by decrypting the field
IdentityAuth. The establishment of the TPM_OSAP session MUST use the authentication of the TPM
Owner.

7. Set continueAuthSession to FALSE.

8. Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TCPA-protected
capability, in accordance with the algorithm specified in idKeyParams

9. Create TCPA_KEY structure idKey using idKeyParams as the default values for the structure.

10. Ensure that the authorization information in identityAuth is properly stored in the idKey as usageAuth.

11. Attach identityPubKey and tpm_signature_key to idKey

12. Set idKey -> migrationAuth to TTCPA_PERSISTANT_DATA -> tpmProof

13. Ensure that all TCPA_PAYLOAD_TYPE structures identity this key as TCPA_PT_ASYM

14. Encrypt the private portion of idKey using the SRK as the parent key

15. Create a TCPA_IDENTITY_CONTENTS structure named idContents using labelPrivCADigest and
the information from idKey

16. Sign idContents using tpm_signature_key and TCPA_SS_RSASSAPKCS1v15_SHA1. Store the
result in identityBinding.

TCPA Main Specification Page 272

Version 1.1a 1 December 2001

9.3.2 TSS_CollateIdentityRequest
Start of informative comment:

The purpose of the TSS_CollateIdentityRequest command is to assemble all the data that will be required
by a Privacy CA in order to assess a platform and attest to the identity of a Subsystem.

The TSS_CollateIdentityRequest command is separate from the TPM_MakeIdentity command because
their processing might be done on different engines. The reason is that TSS_CollateIdentityRequest does
not have to be trustworthy but TPM_MakeIdentity must be trustworthy. Therefore, an implementation of
TSS_CollateIdentityRequest does not require the same protection as an implementation of
TPM_MakeIdentity.

A session key (a nonce) is used to provide confidentiality of the “TCPA_IDENTITY_REQ.” This is to
ensure that only the Privacy CA chosen by the Owner can interpret the data, while minimizing exposure
of that Privacy CA’s identity (public) key.

Once the data structure TCPA_IDENTITY_REQ has been produced, it should be sent to the Privacy CA
chosen by the Owner.

End of informative comment.
Type
TSS capability and MAY be TPM capability.

Suggested Parameters

Type Name Description

TCPA_IDENTITY_PROOF proof This SHALL be the structure specified in
4.30.3

TCPA_KEY_PARMS SymAlgorithm This SHALL specify the type of symmetric
encryption algorithm to be used for a
session key, and the scheme it will use to
perform encryptions.

TCPA_PUBKEY CaPubKey This SHALL be public key of the CA which
will provide the credential for the identity

UINT32* ReqSize This SHALL be the size of the identityReq
field

TCPA_IDENTITY_REQ* IdentityRequest This SHALL be the data structure defined in
this section.

Description
The command TSS_CollateIdentityRequest assembles all data necessary to request attestation of a
Trusted Platform Module identity.

The structure “proof” (of type TPM_IDENTITY_PROOF) contains fields that a privacy-CA requires in order
to decide whether to attest to the TPM identity described by “proof”.

A Trusted Platform Subsystem that receives a valid TSS_CollateIdentityRequest command SHALL export
the data structure “TCPA_IDENTITY_REQ.”

The TSS in executing this function performs two encryptions. The first is to symmetrically encrypt the
information and the second is to encrypt the symmetric encryption key with an asymmetric algorithm. The
symmetric key is a random nonce and the asymmetric key is the public key of the CA that will provide the
identity credential.

TCPA Main Specification Page 273

Version 1.1a 1 December 2001

For reasons of interoperability, CaPubKey SHOULD indicate TCPA_ALG_RSA (RSA) with a key length of
2048 bits. SymAlgorithm SHOULD be TCPA_ALG_3DES (3DES in CBC mode).

The use of TCPA_ALG_AES (AES in CBC mode) as the symmetric algorithm is encouraged.

Actions
The command SHALL perform the following actions:

1. Validate that the TSS can support the symmetric algorithm and the asymmetric algorithm necessary
to perform the encryptions. If the TSS does not support these algorithms it MUST return
TCPA_BAD_PARAMETER.

2. Initialize the identityRequest area to be the TCPA_IDENTITY_REQ structure.

3. Create a session key in accordance with the algorithm in SymAlgorithm, by calling TSS_GetRandom.

4. Create an IV in accordance with the algorithm in SymAlgorithm, by calling TSS_GetRandom.

5. Encrypt the TCPA_IDENTITY_PROOF structure using the session key created in step 3, the IV
created in step 4, and the symmetric algorithm specified by SymAlgorithm.

6. Place the encrypted TCPA_IDENTITY_PROOF blob into the TCPA_IDENTITY_REQ.symBlob field.

7. Create a TCPA_SYMMETRIC_KEY structure using the session key created in step 3.

8. Encrypt the TCPA_SYMMETRIC_KEY structure created in step 7 using the algorithm specified in the
key caPubKey.

9. Place the encrypted TCPA_SYMMETRIC_KEY blob into the TCPA_IDENTITY_REQ.asymBlob field.

10. Create TCPA_IDENTITY_REQ.SymAlgorithm using SymAlgorithm and inserting the IV created in
step 4 into the previously empty “parms” field.

11. Create TCPA_IDENTITY_REQ.AsymAlgorithm from CaPubKey.

12. Return the TCPA_IDENTITY_REQ structure.

TCPA Main Specification Page 274

Version 1.1a 1 December 2001

9.3.3 Contacting a Privacy CA
Start of informative comment:

The operations and procedures of a Privacy CA are outside the scope of this specification.

The anticipation, however, is that a Privacy CA will use at least the following checks before agreeing to
attest to a TPM identity for a platform:

• Interpret the data structure “TCPA_IDENTITY_REQ” in the supplied data and validate the various
fields in the structure.

• The verification of the privacy CA’s public is inherent in the decryption of the TCPA_IDENTITY_REQ
structure. If the decryptions yield valid structures then the key was correct otherwise, the structures
are not properly formed and the key was bad.

• Interpret the conformance credential information in the supplied data in order to verify that the design
of the platform meets the TCPA specification and is in accordance with the policies of the Privacy CA.

• Interpret the platform-credential information in the supplied data in order to verify that the construction
of the platform meets the TCPA specification and is in accordance with the policies of the Privacy CA.

• Interpret the endorsement-credential information in the supplied data in order to verify that the
construction of the TPM meets the TCPA specification and is in accordance with the policies of the
Privacy CA.

• Create a TCPA_IDENTITY_CONTENTS structure and validate the signature of the area provided by
the new identity.

It is anticipated that a Privacy CA will then take the following actions:

1. Using the supplied data, construct a TPM-identity-credential according to the TCPA specification, and
sign the instantiation using a private key belonging to the Privacy CA.

2. Generate a session key. The assumption is that the session key comes from a suitable random
number generator that provides a suitable level of entropy.

3. Create the TCPA_SYM_CA_ATTESTATION structure.

4. Store the session key in TCPA_ASYM_CA_CONTENTS.

5. Create a digest of the identityPubKey. Store the digest value in TCPA_ASYM_CA_CONTENTS.

6. Encrypt the TCPA_ASYM_CA_CONTENTS structure using the PUBEK sent in the attestation
request.

7. Return the TCPA_SYM_CA_ATTESTATION structure and the encrypted
TCPA_ASYM_CA_CONTENTS structure

The symmetric algorithm should be the same algorithm that the TSS used in creating the
TCPA_IDENTITY_REQ structure. The asymmetric algorithm must be the algorithm that is defined by the
type of PUBEK.

End of informative comment.

TCPA Main Specification Page 275

Version 1.1a 1 December 2001

9.3.4 TPM_ActivateIdentity
Start of informative comment:

The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance that the
credential in the TCPA_SYM_CA_ATTESTATION is for this TPM. The second purpose is to obtain the
session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity before
releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to
authorize the TPM_ActivateIdentity command. The owner may authorize the command using either the
TPM_OIAP or TPM_OSAP authorization protocols.

End of informative comment.
Type
TCPA protected capability; user must provide authorization from the TPM Owner to execute command.
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ActivateIdentity.

4 4 TCPA_KEY_HANDLE idKey Identity key to be activated

5 4 2S 4 UINT32 blobSize Size of encrypted blob from CA

6 <> 3S <> BYTE [] blob The encrypted ASYM_CA_CONTENTS structure

7 4 TCPA_AUTHHANDLE idKeyAuthHandle The authorization handle used for ID key authorization.

 2 H1 20 TCPA_NONCE idKeyLastNonceEven Even nonce previously generated by TPM

8 20 3 H1 20 TCPA_NONCE idKeynonceOdd Nonce generated by system associated with
idKeyAuthHandle

9 1 4 H1 1 BOOL continueIdKeySession Continue usage flag for idKeyAuthHandle.

10 20 TCPA_AUTHDATA idKeyAuth The authorization digest for the inputs and ID key.
HMAC key: idKey.usageAuth.

11 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2 H2 20 TCPA_NONCE authLastNonceEven Even nonce previously generated by TPM to cover
inputs

12 20 3 H2 20 TCPA_NONCE nonceOdd Nonce generated by system associated with
authHandle

13 1 4 H2 1 BOOL continueAuthSession The continue use flag for the authorization handle

14 20 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC
key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC Type Name Description

TCPA Main Specification Page 276

Version 1.1a 1 December 2001

SZ # SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and
tag

3 4 1S 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TCPA_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ActivateIdentity.

4 <> 3S <> TCPA_SYMMETRIC_KEY symmetricKey The decrypted symmetric key.

5 20 2 H1 20 TCPA_NONCE idKeyNonceEven Even nonce newly generated by TPM.

 3 H1 20 TCPA_NONCE idKeynonceOdd Nonce generated by system associated with
idKeyAuthHandle

6 1 4 H1 1 BOOL continueIdKeySession Continue use flag, TRUE if handle is still active

7 20 TCPA_AUTHDATA idKeyAuth
The authorization digest used for the returned
parameters and idKeyAuth session. HMAC key:
idKey.usageAuth.

8 20 2 H2 20 TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H2 20 TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H2 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.
HMAC key: ownerAuth.

Description
The command TPM_ActivateIdentity activates a TPM identity created using the command
TPM_MakeIdentity.

The command assumes the availability of the private key associated with the identity. The command will
verify the association between the keys during the process.

The command will decrypt the TCPA_ASYM_CA_CONTENTS structure, extract the session key and
verify the connection between the public and private keys.

Actions
A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do the following:

1. Using the authHandle field, validate the owner’s authorization to execute the command and all of the
incoming parameters.

2. Using the idKeyAuthHandle, validate the authorization to execute command and all of the incoming
parameters

3. Decrypt blob using PRIVEK as the decryption key. The resulting decrypted area MUST be a
TCPA_ASYM_CA_CONTENTS structure.

4. Compute a digest of the public key in the idKey. Compare the computed digest to the value in the
decrypted TCPA_ASYM_CA_CONTENTS structure. Return with the error code
TCPA_BAD_PARAMETER on a mismatch.

5. Validate that the idKey is the public key of a valid TPM identity by checking that idKey -> keyUsage is
TPM_KEY_IDENTITY

6. Return the session key from the TCPA_ASYM_CA_CONTENTS structure.

TCPA Main Specification Page 277

Version 1.1a 1 December 2001

9.3.5 TSS_RecoverTPMIdentity
Start of informative comment:

The purpose of TSS_RecoverIdentity is to recover a plaintext copy of the data structure
TPM_IDENTITY_CREDENTIAL that attests that a particular identity belongs to a genuine TCPA Trusted
Platform.

The TSS_RecoverIdentity command is separate from the TPM_ActivateIdentity command because their
processing might be done on different engines. The reason is that TSS_RecoverIdentity does not have to
be trustworthy but TPM_ActivateIdentity must be trustworthy. Therefore, an implementation of
TSS_RecoverIdentity does not require the same protection as an implementation of
TPM_ActivateIdentity.

Exactly one entity may attest to a TPM identity.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.

The command TSS_RecoverIdentity obtains a plaintext copy of the TPM_IDENTITY_CREDENTIAL
created by a Privacy CA.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is only
available to authorized entities.

Suggested Parameters

Type Name Description

TCPA_SYMMETRIC_KEY SessionKey This SHALL be the symmetric key decrypted by the
TPM_ActivateIdentity

UINT32 symAttSize This SHALL be the size of the symAtt parameter

TCPA_SYM_CA_ATTEST
ATION*

symAtt This SHALL be the
TCPA_SYM_CA_ATTESTATION structure

UINT32* CredentialSize This SHALL be the size of the credential

BYTE* Credential This SHALL be the decrypted
TCPA_IDENTITY_CREDENTIAL

Actions
A Trusted Platform Subsystem that receives a valid TSS_RecoverIdentity command SHALL do the
following:

1. Using the session key and the symmetric algorithm indicated by algorithm and the algorithm
parameters, decrypt credential parameter inside TCPA_SYM_CA_ATTESTATION to recover the
TPM_IDENTITY_CREDENTIAL.

2. The TSS SHOULD verify the self-consistency of TPM_IDENTITY_CREDENTIAL and abandon this
TSS_RecoverIdentity process if there is an inconsistency. The process of verifying certificates is
outside the scope of this specification.

3. Export TPM_IDENTITY_CREDENTIAL.

TCPA Main Specification Page 278

Version 1.1a 1 December 2001

9.4 Instantiation of Data When Contacting a Privacy CA
Start of informative comment:
Unambiguous definition of data structures is necessary if those data are to be communicated between
platforms. An ASN.1 description is such an unambiguous definition.

This section describes the protocol messages to be sent from the Owner to the Privacy_CA and from the
Privacy_CA to the Owner during the procedure for obtaining a TPM identity. These messages will need to
be supported by suitable transport (and lower-layer) protocols. A number of alternatives exist for the
transport layer, including TCP, HTTP, e-mail, and FTP. However, specification of any of these alternatives
— including resolution of related issues such as naming/addressing, whether polling should be allowed,
and whether confirmation messages are required — is considered beyond the scope of this document.

Some of the data that is passed from the Privacy CA to the Owner is DER-encoded and must be used by
the TPM. This is not, however, a significant burden for the TPM.

The Owner receives from the Privacy CA the ASN.1 DER-encoded structure PCAResponse, which is a
SEQUENCE of version, symmAlg, encTcpaAsymCaContents, and tcpaSymCaAttestation. The Owner
software (perhaps the TSS, or perhaps some other module) parses this structure, pulls out the
encTcpaAsymCaContents field (which is a {tag, length, value} combination), and returns the “value”
portion (which is simply a string of bits).

The Owner passes this “value” to the TPM. This “value,” as stated in the specification, is the ciphertext
resulting from the encryption, under the PUBEK, of a DER-encoded structure. Therefore, the TPM simply
decrypts the value it is handed using its PRIVEK. The resulting string of bits has the following format:

• tag1 length1 tag2 length2 value2 tag3 length3 value3

• The first field (“tag1”) is an identifier for SEQUENCE and takes up one byte. The next field (“length1”)
reports the number of octets (i.e., bytes) remaining in the entire string, and also takes up one byte.
“tag2” is an identifier for BIT STRING and takes up one byte. “length2” reports the length in bytes of
“value2” and takes up two bytes. “value2” is the result of hashing tpmIdKey (e.g., if SHA-1 is used, it
is 160 bits in length, but the TPM will already know this so it doesn't need to understand “length2” in
order to figure this out). “tag3” is an identifier for BIT STRING and takes up one byte. “length3”
reports the length in bytes of “value3” and takes up two bytes. “value3” is the symmetric key. (Note
that “value3” may have a length of 128 bits for one symmetric cipher, 168 for another, and 256 for yet
another, but the TPM does not need to determine this from “length3.” Instead, it simply reads to the
end of the string).

In short, therefore, the TPM does the following on decryption:

• skips five bytes;

• reads the next (say 160, if SHA-1 is used) bits and compares this to the table of hashed, inactivated
public keys that it has stored(if there is a match it proceeds, otherwise, it aborts the operation);

• skips the next three bytes;

• reads the remaining bytes (until the end of the string) into a buffer; and

• returns this buffer to the Owner as the symmetric key.

End of informative comment.

9.4.1 From Owner to Privacy CA
The protocol from the Owner to the Privacy CA SHALL consist of the following IdentityRequest message:
TcpaIdentityReq ::= SEQUENCE {

version Version,
asymAlg TcpaAlgorithmParms,
symAlg TcpaAlgorithmParms,

TCPA Main Specification Page 279

Version 1.1a 1 December 2001

asymBlob EncTcpaSymmetricKey,
symBlob EncTcpaIdentityProof

}
Version ::= INTEGER
-- the version number, for compatibility with future revisions of
-- this specification. It shall be 0 for this version of the
-- specification.

TcpaAlgorithmParms ::= SEQUENCE {
algId AlgorithmIdentifier,
parms OCTET STRING
-- the parameters for the algorithm specified in algId

}

EncTcpaSymmetricKey ::= BIT STRING
-- the ciphertext resulting from the encryption (under the public
-- identity key of the Privacy CA) of the following DER-encoded data
-- structure.

TcpaSymmetricKey ::= SEQUENCE {
algId AlgorithmIdentifier,
encScheme OCTET STRING, -- TCPA_ENCRYPTION_SCHEME
data BIT STRING -- randomly-generated session key

}

EncTcpaIdentityProof ::= BIT STRING
-- the ciphertext resulting from the encryption (under the session
-- key in TcpaSymmetricKey above) of the following DER-encoded data
-- structure:

TcpaIdentityProof ::= SEQUENCE {
tcpaVersion TCPASpecVersion, -- “major.minor”
tpmIdKey SubjectPublicKeyInfo, -- new public key
tpmIdLabel OCTET STRING, -- identity label
identityBinding BIT STRING, -- (see below)
endorsementCred Certificate, -- X.509v3 PK cert
platformCred Certificate, -- X.509 attr. cert
conformanceCred Certificate -- X.509 attr. cert

}

-- SubjectPublicKeyInfo
-- (a SEQUENCE of an AlgorithmIdentifier and a BIT STRING) is
-- specified in X.509. The BIT STRING contains the subject’s public
-- key (for example, if the algorithm specified is rsaEncryption, the
-- BIT STRING contains the BER encoding of a value of PKCS #1 type
-- “RSAPublicKey”).

-- identityBinding
-- is the signature value(using the newly generated TPM private key
-- that corresponds to the public key in tpmIdKey) over the data
-- specified in Section 4.30.1 TCPA_IDENTITY_CONTENTS. How that data -- is
formatted or delimited is beyond the scope of the protocol
-- specified here; however, the formatting chosen must be known to
-- both the TPM and the Privacy CA.

TCPA Main Specification Page 280

Version 1.1a 1 December 2001

9.4.2 From Privacy CA to Owner
The protocol from the Privacy CA to the Owner consists of the PCAResponse message:
PCAResponse ::= SEQUENCE {

version Version,
symmAlg AlgorithmIdentifier,
encTcpaAsymCaContents EncTcpaAsymCaContents,
tcpaSymCaAttestation TcpaSymCaAttestation

}

EncTcpaAsymCaContents ::= BIT STRING
-- the ciphertext resulting from the encryption (under the PUBEK of
-- the TPM) of the following DER-encoded data structure:

TcpaAsymCaContents ::= SEQUENCE {
idDigest BIT STRING, -- hash of tpmIdKey
sessionKey BIT STRING

}

-- NOTE: the validity of the entire protocol for obtaining a TPM
-- identity depends critically upon the assumption that a genuine
-- TPM will only ever decrypt data using its PRIVEK as part of the
-- TPM_ActivateIdentity() call. An Owner will never be able to ask a
-- TPM for the decryption of arbitrary data that has been encrypted
-- with its PUBEK. Furthermore, the difficulty of successfully
-- impersonating a TPM is ultimately bound to the computational
-- complexity of finding a collision for idDigest. It is therefore
-- STRONGLY RECOMMENDED that the digest be computed using the full
-- output of a cryptographic hash algorithm of sufficient strength
-- (e.g., the full 160 bits of SHA-1).

TcpaSymCaAttestation ::= SEQUENCE {
algorithm TcpaAlgorithmParms,
encCredential BIT STRING
-- the ciphertext resulting from the encryption (under the
-- symmetric session key in TcpaAsymCaContents above) of the
-- tpmIdentityCredential (which is itself DER-encoded as an
-- X.509 PK Certificate).

}

TCPA Main Specification Page 281

Version 1.1a 1 December 2001

9.5 Instantiation of Credentials as Certificates
Start of informative comment:
Unambiguous definition of a data structure containing credentials is necessary if those credentials are to
be communicated between platforms. A certificate is such an unambiguous definition.

The TCPA requires credentials to prove various pieces of information. This version of the specification
uses X.509 certificates to provide these credentials. The TCPA is not requiring the entire flexibility of
X.509, rather TCPA is using the well defined certificate structure to create the necessary TCPA
credentials.

End of informative comment.
Certificate syntax
TCPA certificate syntax conforms with the definitions for public-key certificates and attribute certificates in
X.509. The following TCPA certificate types are public-key certificates:

• TPM endorsement certificate

• TPM identity certificate

The following TCPA certificate types are attribute certificates:

• Platform endorsement certificate

• Platform conformance certificate

• Validation data certificate

The form of the following certificates is out of scope for this version of the TPM specification:

• TPM endorsement entity certificate

• TCPA component endorsement entity certificate

• Platform endorsement entity certificate

• Platform conformance certificate

The serial number used by the following certificates is not unique for each platform. It is anticipated that
the serial number would remain the same on multiple platforms.

For instance, all platforms of the same model and version would have the same serial number in their
platform endorsement credential. For these same platforms, the platform conformance certificates would
all use the same serial number but that number would be different than the endorsement certificate serial
number.

TCPA Main Specification Page 282

Version 1.1a 1 December 2001

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALs
Start of informative comment:

An endorsement certificate is an instantiation of an TPM_ENDORSEMENT_CREDENTIAL.

Access to an endorsement certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that the PUBEK is a 2048bit RSA keys.

End of informative comment.
If the data structure <endorsement_certificate> is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

Overview
The TPM endorsement certificate represents an assertion by the TPM endorsement entity that the
referenced TPM conforms with the TCPA TPM specification.

Profile
Notes:

• Some fields are assigned a value even though the certificate user performs no action based on
that value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

• It is intended that the lifetime of a TPM will be shorter than the crypto-period of the TPM
endorsement public and private keys. Therefore, keys are not “rolled-over”.

• The trustworthiness of the architecture is vulnerable to the compromise of a single TPM
endorsement private key. However, the architecture does not include a revocation mechanism.
Nevertheless, certain forms of revocation scheme can be retrofitted, should it become necessary
at some time in the future.

In the case of the TPM endorsement certificate, the issuer is the TPM endorsement entity and the user is
a Privacy CA.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

Use in validating the platform endorsement
and conformance certificates.

Signature Assign the algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check the algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the TPME (which shall be a
2048-bit RSA key), obtained by an out-of-
band means and referenced by “issuer” and
“authority key identifier”.

Issuer The distinguished name of the
TPM endorsement entity. That is
the entity that asserts that the
subject TPM conforms with the
TCPA specification. (Note: this
may be the TPM manufacturer or a
conformance test laboratory.)

Check that the name is the name of one of
the acceptable TPM endorsement entities,
use in validating the platform endorsement
and conformance certificates.

TCPA Main Specification Page 283

Version 1.1a 1 December 2001

Validity Assign notBefore to the current
time and notAfter to a later time
(maybe the latest time permitted by
the encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Subject Assign the value NULL. No action.

Subject public
key info

Assign algorithm identifier RSAES-
OAEP (1:2:840:113549:1:1:7).
Include a 2048-bit RSA public key
for key encipherment with OAEP
formatting. (Note: this is the TPM
public endorsement key.)

Use the public key in the TPM identity
protocol.

Issuer unique
identifier

Omit. No action.

Subject unique
identifier

Omit. No action.

Extensions

Authority key
identifier

Assign "critical" the value FALSE.
Assign the value of “subject key
identifier” from the manufacturer’s
certificate, if available, else omit.

Use to locate the certificate that contains a
public key of the manufacturer with which the
signature on this certificate can be verified.

Subject key
identifier

Omit. No action.

Key usage May be omitted. If included, then
the key encipherment bit shall be
set TRUE.

If present, then check that the key
encipherment bit is TRUE, else reject.

Extended key
usage

Omit. If present and marked critical, then reject.

Private key
usage period

Omit. If present, then check that the current time is
later than the notBefore time.

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an
HTTP URL at which a plain
language version of the TPM
endorsement entity's certificate
policy may be obtained. Assign
the explicit text userNotice policy
qualifier the value “TCPA Trusted
Platform Module Endorsement”.

Check that at least one acceptable
policyIdentifier value is present. Transfer the
acceptable policyInformation value to the
TPM identity certificate “certificate policies”
extension.

Policy mappings Omit. No action.

Subject
alternative name

Assign "critical" the value FALSE.
Include the TPM identity, using the
directory name-form with RDNs for
the TPM manufacturer, model and
version numbers.

Check that the TPM manufacturer, model
and version numbers are acceptable.
Transfer to the TPM identify certificate
“subject alternative name” extension value
for the TPM.

Issuer alternative
name

Omit. No action.

TCPA Main Specification Page 284

Version 1.1a 1 December 2001

Subject directory
attributes

Include a “subject directory
attributes” extension. Assign
"critical" the value FALSE. Include
the multi-valued attribute
“supported algorithms” (see
X.509). Include object identifiers
for the following algorithms:
RSAES-OAEP, SHA-1
(1.3.14.3.2.26) and TPM identity
protocol.

Adapt the TPM identity protocol to use only
algorithms supported by the TPM.

 Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest
version of the TCPA specification
with which the TPM
implementation conforms.

Check that the TCPA specification version is
acceptable, else reject.

 Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of
the TPM. (Note: this is the TPM
distributed validation.)

Optionally (and if present), check whether
the TPM implementation has acceptable
security qualities. Transfer to the TPM
identity certificate “subject directory
attributes” extension.

Basic constraints Assign “critical” the value TRUE.
Assign “CA” the value FALSE

No action.

Name constraints Omit. No action.

Policy constraints Omit. No action.

Inhibit any policy Omit. No action.

CRL distribution
points

Omit. If present and marked critical, then reject.

TCPA Main Specification Page 285

Version 1.1a 1 December 2001

9.5.2 Instantiation of PLATFORM_CREDENTIAL
Start of informative comment:

A platform certificate is an instantiation of a platform_credential.

Access to the platform certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.

If the data structure <platform_certificate> is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview
The Platform Endorsement Certificate represents an assertion by the platform endorsement entity that the
referenced platform incorporates a TPM and an RTM in a manner that conforms with the TCPA
specification.

Profile
Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform endorsement certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder BaseCertificateID referencing the
corresponding TPM endorsement
certificate. (Note: this is the TPM
credential reference.)

Check that the certificate ID correctly
references the TPM endorsement certificate
used to validate the TPM identity request
message, else reject.

Issuer The distinguished name of the
platform endorsement entity. That is
the entity that asserts that the subject
platform incorporates a TPM and
RTM in a manner that conforms with
the TCPA specification. (Note: this
may be the platform manufacturer or
a conformance test laboratory.)

Check that the name is the name of one of
the acceptable platform endorsement
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the Platform Endorsement
Entity (which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key
identifier”

Serial number Assign a value unique per instance of
a TBB amongst all certificates issued
by "issuer"

No action.

attrCertValidity
Period

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the

Check that the current time is later than the
notBefore time, else reject.

TCPA Main Specification Page 286

Version 1.1a 1 December 2001

the latest time permitted by the
encoding scheme).

Attributes A “supported algorithms” attribute
(see X.509) indicating the
cryptographic algorithms supported by
the platform.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

 Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation
conforms.

Check that the TCPA specification version is
acceptable, else reject.

 If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate.

 If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate.

 If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria protection profile,
then include the "foundation
protection profile" identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate
"subject directory attributes" extension.

 If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the "foundation security
target" identifier attribute.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate
"subject directory attributes" extension.

 If there is, or will be, a Platform
Conformance Certificate, then a
ConformanceCertificateLocation
attribute should be included to
indicate how, and from where, it can
be retrieved.

Use the information to locate and retrieve the
corresponding Platform Conformance
Certificate.

 Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of the
platform. (Note: this is the platform
distributed validation.)

Optionally (and if present), check whether
the platform implementation has acceptable
security qualities. Transfer to the TPM
identity certificate "subject directory
attributes" extension.

Issuer unique
identifier

Omit. No action.

Extensions

Certificate Assign “critical” the value TRUE. Check that at least one acceptable

TCPA Main Specification Page 287

Version 1.1a 1 December 2001

policies Assign policyIdentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform manufacturer’s
certificate policy may be obtained.
Assign the explicit text userNotice
policy qualifier the value “TCPA
Trusted Platform Endorsement”.

policyIdentifier value is present. Transfer the
policyInformation value to the TPM identity
certificate "certificate policies" extension.

Subject
alternative
name

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

Check that the manufacturer, model and
version numbers are acceptable. Transfer to
the TPM identity certificate “subject
alternative name” extension.

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
endorsement entity certificate, if
available, else omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform endorsement entity with
which the signature on this certificate can be
verified.

SOA Identifier Omit. No action.

Authority
Attribute
Identifier

Omit. No action.

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Check that “authority” is FALSE.

Delegated
Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Assign “critical” the value TRUE.
Assign one or more of the values of
policyIdentifier from the certificate
policies extension of the TPM
endorsement certificate.

Check that the certificate policies extension
of the TPM endorsement certificate contains
at least one of the values.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev
Available

Omit. No action.

Acceptable
Privilege
Policies

Omit. No action.

TCPA Main Specification Page 288

Version 1.1a 1 December 2001

9.5.3 Instantiation of TPM_CONFORMANCE_CREDENTIAL
Overview
The Platform Conformance Certificate represents an assertion by the platform conformance entity that the
referenced platform conforms with the TCPA specification.

Profile
Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform conformance certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

Check that the value is the same as the
value in the corresponding Platform
Endorsement Certificate, Subject Alternative
Name extension, else reject.

Issuer The distinguished name of the
platform conformance entity. That is
the entity that asserts that the design
of the platform conforms with the
TCPA specification. (Note: this may
be the platform manufacturer or a
conformance test laboratory.)

Check that the name is the name of one of
the acceptable platform conformance
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the platform conformance entity
(which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key
identifier”.

Serial number Assign a value unique per evaluated
series of a TBB amongst all
certificates issued by "issuer"

No action.

attrCertValidity
Period

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Attributes Include a “supported algorithms”
attribute (see X.509) indicating the
algorithms supported by the platform.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

 Include the "TCPA specification
version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation

Check that the TCPA specification version is
acceptable, else reject.

TCPA Main Specification Page 289

Version 1.1a 1 December 2001

conforms.

 If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate.

 If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate.

 If the RTM and means by which the
RTM and TPM are incorporated into
the platform has been successfully
evaluated against a Common Criteria
protection profile, then include the
foundation protection profile identifier
attribute.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate "subject directory
attributes" extension.

 If the RTM and the means by which
the RTM and TPM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the foundation security target
identifier attribute.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate "subject directory
attributes" extension.

Issuer unique
identifier

Omit. No action.

Extensions

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform conformance
entity's certificate policy may be
obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Conformance Credential”.

Check that at least one acceptable
policyIdentifier value is present. Transfer the
policyInformation value to the TPM identity
certificate.

Subject
alternative
name

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform
with RDNs for the platform
manufacturer, model and version
numbers.

Check that the manufacturer, model and
version numbers are identical to those in the
platform endorsement certificate "subject
alternative name" extension.

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
conformance entity's public-key
certificate, if available, else omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform conformance entity with
which the signature on this certificate can be
verified.

SOA Identifier Omit. No action.

TCPA Main Specification Page 290

Version 1.1a 1 December 2001

Authority
Attribute
Identifier

Omit. No action.

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Check that “authority” is FALSE.

Delegated
Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Omit. No action.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev
Available

Omit. No action.

Acceptable
Privilege
Policies

Omit. No action.

TCPA Main Specification Page 291

Version 1.1a 1 December 2001

9.5.4 Instantiation of VALIDATION_DATA
Start of informative comment:

A “Validation Data Attribute Certificate” is an instantiation of validation data.

End of informative comment.
Overview
The validation data certificate represents an assertion by the component validation entity that the
component instructions referenced by the certificate have the attributes conveyed in the certificate. The
certificate syntax conforms with the X.509 definition for an attribute certificate.

In the case of the validation certificate, the issuer is the Validation Entity and the user is a TPS.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder ObjectDigestInfo with missing object
identifier. The value of objectDigest shall
be the digest calculated over the memory
image of the software instructions using
the identified digest algorithm.

Calculate the digest of the memory
image of the software instructions and
check that it is identical to the value in
this field prior to passing control to the
component, else reject.

Issuer The distinguished name of the
component validation entity. That is the
entity that asserts that the component
exhibits the attributes contained in the
certificate. (Note: typically, but not
necessarily, the manufacturer of the
component).

Check that the name is the name of one
of the acceptable component validation
entities.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check algorithm identifier =
1:2:840:113549:1:1:5, else reject.
Validate the signature on the certificate
using the public key of the software
manufacturer (which should be a 2048-bit
RSA key), obtained by an out-of-band
means and referenced by “issuer” and
“authority key identifier”.

Serial number Assign a value unique amongst all
certificates issued by "issuer".
Uniqueness to be determined by the
manufacturer.

No action.

attrCertValidityPe
riod

Assign notBefore to the current time and
notAfter to a later time (maybe the latest
time permitted by the encoding scheme).

Check that the current time is later than
the notBefore time, else reject.

Attributes Include the "TCPA specification version"
attribute, with field values correctly
reflecting the highest version of the
TCPA specification with which the
component conforms.

Check that the TCPA specification
version is acceptable, else reject.

 Optionally, include the "security qualities"
attribute with a text string reflecting the
security qualities of the component.
(Note: this is the component distributed

Optionally (and if present), check
whether the component implementation
has acceptable security qualities.

TCPA Main Specification Page 292

Version 1.1a 1 December 2001

validation.)

Issuer unique
identifier

Omit. No action.

Extensions

Certificate
policies

Assign “critical” the value TRUE. Assign
policyIdentifier at least one object
identifier. Assign the cPSuri policy
qualifier the value of an HTTP URL at
which a plain language version of the
component conformance entity's
certificate policy may be obtained.
Assign the explicit text userNotice policy
qualifier the value “TCPA Validation
Data”.

Check that at least one acceptable
policyIdentifier value is present.

Subject
Alternative Name

Assign "critical" the value FALSE.
Include the component name, using the
"component name" attribute, with RDNs
for the component manufacturer, model
and version numbers.

May be used to determine whether or not
the component is trustworthy.

Authority key
identifier

Assign “critical” the value FALSE. Assign
the value of “subject key identifier” from
the component validation entity
certificate, if available, else omit.

The certificate user may use this value to
locate the certificate that contains a
public key of the component validation
entity with which the signature on this
certificate can be verified.

SOA Identifier Omit. No action.

Authority
Attribute
Identifier

Omit. No action.

Role
Specification
Certificate
Identifier

Omit. No action.

Basic Attribute
Constraints

Assign “critical” the value TRUE. Assign
“authority” the value FALSE.

Check that “authority” is FALSE.

Delegated Name
Constraints

Omit. No action.

Time
Specification

Omit. No action.

Acceptable
Certificate
Policies

Omit. No action.

Attribute
Descriptor

Omit. No action.

User Notice Omit. No action.

No Rev Available Omit. No action.

Acceptable
Privilege Policies

Omit. No action.

TCPA Main Specification Page 293

Version 1.1a 1 December 2001

Privilege Policies

TCPA Main Specification Page 294

Version 1.1a 1 December 2001

9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL
Start of informative comment:

A TPM identity certificate is an instantiation of a TPM_IDENTITY_CREDENTIAL.

Access to the TPM identity certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that TPM identity keys are 2048bit RSA keys.

End of informative comment.
If the data structure <TPM identity certificate> is stored on a platform after an Owner has taken ownership
of that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview
The TPM identity certificate represents an assertion by the Privacy CA that the referenced TPM identity is
controlled by a TPM that conforms with the TPM specification. It contains a different public key to that
contained in the TPM endorsement certificate, but it contains identifying and policy information transferred
from the TPM endorsement, platform endorsement and platform conformance certificates.

Profile
Note:

• Some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

• The policies identified in the TPM and platform certificates are represented by oids and are not
distinguishable except by reference to the contents of the policies themselves. The verifier,
however, must be able to distinguish between the different policy types.

In the case of the TPM identity certificate, the issuer is the Privacy CA and the user is an integrity
verifier.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unique amongst all
certificates issued by “issuer”.

No action.

Signature Assign algorithm identifier sha-
1WithRSAEncryption
(1:2:840:113549:1:1:5).

Check the algorithm identifier =
1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the Privacy CA (which should
be a 2048-bit RSA key), obtained by an out-
of-band means and referenced by “issuer”
and “authority key identifier”.

Issuer The distinguished name of the Privacy
CA.

Check that the name is the name of an
acceptable Privacy CA.

Validity Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Check that the current time is later than the
notBefore time, else reject.

Subject NULL. No action.

Subject public Assign algorithm identifier sha- Check algorithm identifier =

TCPA Main Specification Page 295

Version 1.1a 1 December 2001

key info 1WithRSAEncryption
(1:2:840:113549:1:1:5). The 2048-bit
RSA public key provided to the
Privacy CA by the TPM owner in the
identity request message.

1:2:840:113549:1:1:5, else reject. Use the
public key in the integrity verification
procedure.

Issuer unique
identifier

Omit. No action.

Subject
unique
identifier

Omit. No action.

Extensions

Authority key
identifier

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the Privacy CA’s
public-key certificate, if available, else
omit.

The certificate user may use this value to
locate the certificate that contains a public
key of the Privacy CA with which the
signature on this certificate can be verified.

Subject key
identifier

Omit. No action.

Key usage May be omitted. If included, then the
digital signature bit shall be set TRUE.

If present, then check that the digital
signature bit is TRUE, else reject.

Extended key
usage

Omit. If present and marked critical, then reject.

Private key
usage period

Omit. If present, then check that the current time is
later than the notBefore time, else reject.

Certificate
policies

Assign “critical” the value TRUE.
Assign policyIdentifier at least one
object identifier. Optionally, assign
the cPSuri the value of an HTTP URL
at which a plain language version of
the Privacy CA’s certificate policy may
be obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Trusted Platform Identity”.
Also, include the policyInformation
values from the certificate policies
extensions of the TPM endorsement
and platform endorsement and
conformance certificates provided in
the TPM identity request message.

Check that at least one acceptable Privacy
CA policyIdentifier value is present.
Optionally, check that at least one
acceptable TPM endorsement, one
acceptable platform endorsement and one
acceptable platform conformance
policyIdentifier value are present.

Policy
mappings

Omit. No action.

Subject
alternative
name

Assign “critical” the value FALSE.
Include three values in the extension:

The TPM manufacturer, model and
version numbers from the TPM
endorsement certificate “subject
alternative name” extension provided
in the TPM identity request message;

The platform manufacturer, model

Check that the manufacturer, model and
version numbers of the TPM and of the
platform are acceptable.

TCPA Main Specification Page 296

Version 1.1a 1 December 2001

and version numbers from the
platform endorsement certificate
“subject alternative name” extension
provided in the TPM identity request
message; and

The TPM identity label provided to the
Privacy CA by the TPM owner in the
identity request message, encoded as
a TPMIdLabel other-name. The TPM
owner should choose a label syntax
and semantics that are understood by
the integrity verifier. (Note: the
specified syntax accommodates multi-
byte character sets).

Issuer
alternative
name

Omit. No action.

Subject
directory
attributes

Assign “critical” the value FALSE.
Include a multi-valued “supported
algorithms” (see X.509) attribute
containing object identifiers from the
“subject directory attributes” extension
of the TPM endorsement certificate
and the “attributes” field of the
platform endorsement certificate and
the platform conformance certificate
provided in the TPM identity request
message.

Adapt the integrity verification protocol to use
only algorithms supported by the TPM and
the associated platform.

 Include the single-valued "TPM
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "TPM
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "Foundation
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the single-valued "Foundation
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Check that the identifier is acceptable.

 Include the "security qualities"
attribute from the TPM endorsement
certificate provided in the TPM identity
request message. (Note: this is the

Optionally (and if present), check whether
the TPM has acceptable security qualities.

TCPA Main Specification Page 297

Version 1.1a 1 December 2001

TPM distributed validation.)

 Include the "security qualities"
attribute from the platform
endorsement certificate provided in
the TPM identity request message.
(Note: this is the platform distributed
validation.)

Optionally (and if present), check whether
the platform has acceptable security
qualities.

 Include the "tcpaVersion" attribute
provided in the TPM identity request
message.

Check that the TCPA specification version is
acceptable, else reject.

Basic
constraints

Assign “critical” the value TRUE.
Assign “CA” the value FALSE.

No action.

Name
constraints

Omit. No action.

Policy
constraints

Omit. No action.

Inhibit any
policy

Omit. No action.

CRL
distribution
points

Omit. If present and marked critical, then reject.

TCPA Main Specification Page 298

Version 1.1a 1 December 2001

9.5.6 ASN.1 Definitions
Start of informative comment:

The intention is to register TCPA as an “international body” in the ISO registration hierarchy. This will lead
to shorter oids (object identifiers) and gives TCPA autonomy in the management of its own object
identifiers.

End of informative comment.

The syntax of the "security qualities" attribute is as follows:
SecurityQualities ATTRIBUTE ::= {

WITH SYNTAX SecurityQualities
ID tcpa-tpmSecurityQualities }

SecurityQualities ::= SEQUENCE {
version INTEGER, --0 for this version of the attribute syntax --
statement [0] UTF8String }

Note: future versions of this certificate profile may define additional, optional, "security qualities" fields.
Inclusion of the "statement" field will remain mandatory.

The syntax of the "TCPA Specification Version" attribute is as follows:
TCPASpecVersion ATTRIBUTE ::= {

WITH SYNTAX TCPASpecVersion
ID tcpa-specVersion }

TCPASpecVersion ::= SEQUENCE {
major INTEGER,
minor INTEGER }

The syntax of the protection profile and security target attributes is as follows:
TPMProtectionProfile ATTRIBUTE ::= {

WITH SYNTAX ProtectionProfile
ID tcpa-at-tpmProtectionProfile }

TPMSecurityTarget ATTRIBUTE ::= {
WITH SYNTAX SecurityTarget
ID tcpa-at-tpmSecurityTarget }

FoundationProtectionProfile ATTRIBUTE ::= {
WITH SYNTAX ProtectionProfile
ID tcpa-at-foundationProtectionProfile }

FoundationSecurityTarget ATTRIBUTE ::= {
WITH SYNTAX SecurityTarget
ID tcpa-at-foundationSecurityTarget }
ProtectionProfile ::= OBJECT IDENTIFIER
SecurityTarget ::= OBJECT IDENTIFIER

The syntax of the "component name" attribute is as follows:
ComponentName ATTRIBUTE ::= {

WITH SYNTAX Name
ID tcpa-at-componentName }

TCPA Main Specification Page 299

Version 1.1a 1 December 2001

The following definitions define the syntax of the RDNs used in the subject alternative name extension to
identify the type of the TPM and the platform.
TpmManufacturer ATTRIBUTE ::= {

WITH SYNTAX UTF8String
ID tcpa-at-tpmManufacturer }

TpmModel ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-tpmModel }

TpmVersion ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-tpmVersion }

PlatformManufacturerl ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-platformManufacturer }

PlatformModel ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-platformModel }

PlatformVersion ATTRIBUTE ::= {
WITH SYNTAX UTF8String
ID tcpa-at-platformVersion }

TPMIdLabel OTHER-NAME ::= {UTF8String IDENTIFIED BY {tcpa-at-tpmIdLabel}}

--Object identifier assignments—
tcpa OBJECT IDENTIFIER ::= {TBD}
tcpa-specVersion OBJECT IDENTIFIER ::= {tcpa-1}
tcpa-attribute OBJECT IDENTIFIER ::= {tcpa-2}
tcpa-protocol OBJECT IDENTIFIER ::= {tcpa-3}
tcpa-at-tpmManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 1}
tcpa-at-tpmModel OBJECT IDENTIFIER ::= {tcpa-attribute 2}
tcpa-at-tpmVersion OBJECT IDENTIFIER ::= {tcpa-attribute 3}
tcpa-at-platformManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 4}
tcpa-at-platformModel OBJECT IDENTIFIER ::= {tcpa-attribute 5}
tcpa-at-platformVersion OBJECT IDENTIFIER ::= {tcpa-attribute 6}
tcpa-at-componentManufacturer OBJECT IDENTIFIER ::= {tcpa-attribute 7}
tcpa-at-componentModel OBJECT IDENTIFIER ::= {tcpa-attribute 8}
tcpa-at-componentVersion OBJECT IDENTIFIER ::= {tcpa-attribute 9}
tcpa-at-securityQualities OBJECT IDENTIFIER ::= {tcpa-attribute 10}
tcpa-at-tpmProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 11}
tcpa-at-tpmSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 12}
tcpa-at-foundationProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 13}
tcpa-at-foundationSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 14}
tcpa-at-tpmIdLabel OBJECT IDENTIFIER ::= {tcpa-attribute 15}
tcpa-prt-tpmIdProtocol OBJECT IDENTIFIER ::= {tcpa-protocol 1}

TCPA Main Specification Page 300

Version 1.1a 1 December 2001

10. Conformance Criteria

10.1 Base Levels for Interoperability
Start of informative comment:

The TCPA Support Services (TSS) will interoperate with other TSS devices and applications external to
the TPM. The functions that interoperate are identity creation, challenge and response; backup; and
maintenance. The interoperability must be at a level so that an application or other TSS can, without
modification, send messages and receive replies. The messaging system may be either real-time or
store-and-forward.

The use of TPM and TSS is intentional in the conformance section. The difference between the two is the
level of protection that is available for the functions or data. The TPM provides tight control over execution
and data access, but for the TSS there is no such requirement.

To achieve maximum flexibility the TSS supports a negotiation protocol. This protocol allows the
requestor to determine which features are available and the parameter settings that are appropriate for
each of them.

There is no guarantee of interoperability when support for additional algorithms and protocols is provided.

End of informative comment.

The algorithms and protocols in this specification are the REQUIRED algorithms and protocols. A TPM
subsystem MAY support additional algorithms and protocols. When this specification specifies the use of
the TSS for a feature, an implementation MAY place the feature in the TPM.

The interoperability requirements shall be implemented at the TSS layer not the TPM. It is the
responsibility of the TPM manufacturer to produce a vendor specific byte stream generator. The TSS will
provide a generic API that all applications for a specific platform (PC, PDA, etc) can use.

TCPA Main Specification Page 301

Version 1.1a 1 December 2001

10.2 Conformance Specification Sheet
Start of informative comment:
This section provides a quick listing of the protocols and algorithms that a TPM must support. For details
review the section specific to the function in question.

Algorithms

• RSA, SHA-1, HMAC

Operations

• Random number generation

• Key generation

• Digital signatures (signing and verification)

• Protected storage

• Auditing

• Volatile memory

• Non-volatile memory

End of informative comment.

TCPA Main Specification Page 302

Version 1.1a 1 December 2001

10.3 Protocol Negotiation and Algorithm Agility
Start of informative comment:
The TPM requires interoperability between devices when sending migration packets, identities and
backup issues. For these reasons the specification mandates algorithms and message formats.

A related issue is that the set of algorithms picked by the specification may not meet the needs of a
certain community. The specification therefore allows different algorithms to be in use. For instance, when
creating an identity the creator can specify the algorithm and algorithm parameters for the identity. The
specification requires that the TPM support the RSA algorithm, however the TPM may support additional
algorithms and parameters.

Any challenger can request the list of algorithms and parameters that a TPM supports using the
TPM_GetCapability command.

A challenger does not negotiate algorithms and parameters rather the challenger requests a specific type
and the TPM either executes the command or fails the request.

End of informative comment.

The TPM MUST support the base algorithms specified for each operation. The TPM MAY support
additional algorithms and parameters.

The TPM manufacturer MUST include in the TPM credential all algorithms that the TPM supports.

The TSS manufacturer MUST include in the platform credential all algorithms that the TSS supports.

TCPA Main Specification Page 303

Version 1.1a 1 December 2001

10.4 Cryptographic Algorithms and Protocols
Start of informative comment:
The algorithms and protocols are the minimum that the TSS and TPM must support. Additional algorithms
and protocols may be available to the TPM and TSS. All algorithms and protocols available in the TPM
and TSS must be included in the list in the TPM and platform credential.

End of informative comment.

10.4.1 Asymmetric
Start of informative comment:

The asymmetric algorithm provides both digital signatures and wrapping of keys. The requirement of the
TPM to support RSA allows the specification of one algorithm for both purposes.

TPM devices that implement different algorithms may have different algorithms perform the signing and
wrapping.

There is no requirement concerning how the RSA algorithm is to be implemented. TPM manufacturers
may use Chinese Remainder Theorem (CRT) implementations or any other method. Designers should
review P1363 for guidance on RSA implementations.

End of informative comment.

• The TPM MUST support RSA.

• The TPM MUST use the RSA algorithm for encryption and digital signatures.

• The TPM MUST support key sizes of 512, 1024, and 2048 bits. The TPM MAY support other key
sizes. The minimum RECOMMENDED key size is 1024 bits.

• The RSA public exponent MUST be e, where e = 216+1.

TPM devices that use CRT as the RSA implementation MUST provide protection and detection of failures
during the CRT process to avoid attacks on the private key.

The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve. These algorithms
may be in use for wrapping, signatures, and other operations. There is no guarantee that these keys can
migrate to other TPM devices or that other TPM devices will accept signatures from these additional
algorithms.

All Storage keys MUST be of strength equivalent to a 2048 bits RSA key or greater. The TPM SHALL
NOT load a Storage key whose strength less than that of a 2048 bits RSA key.

All TPM Identity keys MUST be of strength equivalent to a 2048 bits RSA key, or greater.

10.4.2 Symmetric
Start of informative comment:

The encryption done by the TPM does not require a symmetric algorithm. The TSS must provide the bulk
encryption support. The assumption is that the TSS has larger bandwidth and more MIPS to accomplish
this type of encryption.

There is no requirement that a TPM NOT support a symmetric algorithm. A TPM may implement a
symmetric algorithm.

The requirement to support both DES and 3DES is because some localities have restrictions on the
import or export of 3DES and the TSS should not have an export or import limitation. DES should be in
use only when the 3DES is not allowable.

End of informative comment.

TCPA Main Specification Page 304

Version 1.1a 1 December 2001

The TSS MUST support 3DES. 3DES SHOULD be the symmetric algorithm of choice. The key size of
3DES MUST be 196 bits (three 64-bit keys). 3DES MUST be run in encrypt-decrypt-encrypt (EDE) mode.
The TSS MUST provide detection of weak 3DES keys.

The TSS MUST support DES. The key size for DES MUST be 64 bits (56 bits plus parity). The TSS
MUST provide detection of weak DES keys.

The TSS SHOULD have support for AES when it becomes available.

A TPM MUST support the storage of at least 256-bit symmetric keys.

10.4.3 Hashing
The TPM MUST support the SHA-1 hash algorithm as defined by FIPS-180-1. The output of SHA-1 is 160
bits and all areas that expect a hash value are REQUIRED to support the full 160 bits.

10.4.4 Signature Operations
The TPM MUST use the RSA algorithm for signature operations.

The TPM MAY use other asymmetric algorithms for signatures; however, there is no requirement that any
other TPM device either accept or verify those signatures.

The TPM MUST use P1363 for the format and design of the signature output.

TCPA Main Specification Page 305

Version 1.1a 1 December 2001

10.4.5 Creating a PCR composite hash
The definition specifies the operation necessary to create TCPA_COMPOSITE_HASH.

Action
The hashing MUST be done using the SHA-1 algorithm.

The input must be a valid TCPA_PCR_SELECTION structure.

The process creates a TCPA_PCR_COMPOSITE structure from the TCPA_PCR_SELECTION structure
and the PCR values to be hashed. If constructed by the TPM the values MUST come from the current
PCR registers indicated by the PCR indices in the TCPA_PCR_SELECTION structure.

The process then computes a SHA-1 digest of the TCPA_PCR_COMPOSITE structure.

The output is the SHA-1 digest just computed.

10.4.6 Creating TCPA_CHOSENID_HASH
This definition specifies the operation necessary to create a TCPA_CHOSENID_HASH structure.

Parameters

Type Name Description

BYTE [] identityLabel The label chosen for a new TPM identity

TCPA_PUBKEY
privacyCA

The public key of a privacy CA chosen to
attest to a new TPM identity

Action
The hashing MUST be done using the SHA-1 algorithm.

The process concatenates identityLabel and privacyCA (identityLabel followed by privacyCA) and
computes a SHA-1 digest of the concatenated data.

The output is the SHA-1 digest just computed.

10.4.7 Using Secret Keys
Informative comments:
Secret keys can be loaded into a TPM, but preferably are generated inside the TPM.

A TPM generated key must not be used as a secret key if it has already been exposed.

Secret keys obtained from blobs must not be exposed outside the TPM.

End of informative comments.

A secret key is a key that is a private asymmetric key or a symmetric key.

Data SHOULD NOT be used as a secret key by a TCPA protected capability unless that data has been
extant only in a shielded location.

A key generated by a TCPA protected capability SHALL NOT be used as a secret key unless that key
has been extant only in a shielded location.

A secret key obtained by a TCPA protected capability from a Protected Storage blob SHALL be extant
only in a shielded location.

TCPA Main Specification Page 306

Version 1.1a 1 December 2001

10.5 Random Number Generator (RNG)
Start of informative comment:
The Random Number Generator (RNG) is the source of randomness in the TPM. The TPM uses these
random values for nonces, key generation and randomness in signatures.

The understanding is that this definition of the RNG, depending on implementation, could be a Pseudo
Random Number Generator (PRNG). On those devices that have a hardware source of entropy, this
implementation may be an RNG and not a PRNG so there is no need for to keep track of which is which;
that is, the specification will always use RNG.

End of informative comment.

The RNG for the TPM will consist of the following components:

• Entropy source and collector

• State register

• Mixing function

The RNG capability is a TPM-protected capability with no access control.

The RNG output may or may not be shielded data. When the data is for internal use by the TPM (e.g.,
asymmetric key generation) the data MUST be held in a shielded location. When the data is for use by
the TSS or another external caller, the data is not shielded.

10.5.1 Entropy Source and Collector
Start of informative comment:

The entropy source is the process or processes that provide entropy. These types of sources could
include noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes the output.
The difference between the collector and the mixing function (described in section 10.6.3, “Mixing
Function”) is that the collector may have special code to handle any bias or skewing of the raw entropy
data. For instance, if the entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then
the collector design takes that bias into account before sending the information to the state register.

End of informative comment.
The entropy source MUST provide entropy to the state register in a manner that provides entropy that is
not visible to an outside process. For compliance purposes, the entropy source MAY be in the TSS and
not the TPM; however, attention MUST be paid to the reporting mechanism.

The entropy source MUST provide the information only to the state register. The entropy source may
provide information that has a bias, so the entropy collector must remove the bias before updating the
state register. The bias removal could use the mixing function or a function specifically designed to
handle the bias of the entropy source. The entropy source can be a single device (such as hardware
noise) or a combination of events (such as disk timings). It is the responsibility of the entropy collector to
update the state register whenever the collector has additional entropy.

10.5.2 State Register
Start of informative comment:

The state register implementation may use two registers: a non-volatile register and a volatile register.
The TPM loads the volatile register from the non-volatile register on startup. Each subsequent change to
the state register from either the entropy source or the mixing function affects the volatile state register.
The TPM saves the current value of the volatile state register to the non-volatile register on TPM power-

TCPA Main Specification Page 307

Version 1.1a 1 December 2001

down. The TPM may update the non-volatile register at any other time. The reasons for using two
registers are

• to handle an implementation in which the non-volatile register is in a flash device and

• to avoid overuse of the flash, as the number of writes to a flash device are limited.

End of informative comment.
The state register is in a TPM-shielded location. The state register MUST be non-volatile. The update
function to the state register is a TPM-protected capability. The primary input to the update function
SHOULD be the entropy collector.

If the current value of the state register is unknown, calls made to the update function with known data
MUST NOT result in the state register ending up in a state that an attacker could know. This requirement
implies that the addition of known data MUST NOT result in a decrease in the entropy of the state
register.

The TPM MUST NOT export the state register.

10.5.3 Mixing Function
Start of informative comment:

The mixing function takes the state register and produces some output.

The mixing function is a TPM-protected capability. The mixing function takes the state register and
creates the output of the RNG. The output MUST conform to the requirements for PRNG from FIPS 140-
1.

End of informative comment.

Each use of the mixing function MUST affect the state register. This requirement is to affect the volatile
register and does not need to affect the non-volatile state register.

10.5.4 RNG Reset
Start of informative comment:

The resetting of the RNG occurs at least in response to a loss of power to the device.

These tests prove only that the RNG is still operating properly; they do not prove how much entropy is in
the state register. This is why the self-test checks only after the load of previous state and may occur
before the addition of more entropy.

End of informative comment.
The RNG MUST NOT output any bits after a system reset until the following occurs:

• The entropy collector performs an update on the state register. This does not include the adding of
the previous state but requires at least one bit of entropy.

• The mixing function performs a self-test. This self-test MUST occur after the loading of the previous
state. It MAY occur before the entropy collector performs the first update.

TCPA Main Specification Page 308

Version 1.1a 1 December 2001

10.6 Key Generation
Start of informative comment:
Key generation is algorithm-specific. The requirements for a given algorithm come from the preceding
section or sections specific to it.

There are no timing requirements on the length of time that a TPM must meet when performing key
generation.

End of informative comment.

10.6.1 Asymmetric
The TPM MUST generate asymmetric key pairs. The generate function is a protected capability and the
private key is held in a shielded location. The implementation of the generate function MUST be in
accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If additional
asymmetric algorithms are available, they MUST use the definitions from P1363 for the underlying basis
of the asymmetric key (for example, elliptic curve fitting).

10.6.2 Symmetric
The TSS MUST generate a symmetric key by taking the next n bits from the TPM RNG.

The TSS SHOULD provide any processing of a symmetric key. Processing is an algorithm-specific
operation and implementation is left to the designer.

10.6.3 Nonce Creation
The creation of all nonce values MUST use the next n bits from the TPM RNG.

TCPA Main Specification Page 309

Version 1.1a 1 December 2001

10.7 Auditing
Start of informative comment:
The TPM and TSS must be able to report a log of events. The log uses the same paradigm as the PCRs,
the TPM keeps a PCR value that extends for each log event, and the TSS maintains the log entries for
Challengers to review.

The TPM generates an audit event and the TSS creates the log. The protection of the log is a TSS
requirement. The TSS is responsible for collecting each audit log event.

The TPM uses a PCR and extends it for each audit event. The TSS can use the PCR to create a log that
shows any attempt to tamper with it.

The TPM Owner can select the operations that will generate an audit event.

End of informative comment.

The TPM MUST be able to generate audit events for all TCPA protected capabilities.

The TPM Owner MUST be able to select the functions that will generate an audit event at any time.

The TPM MUST provide a PCR to store and log the audit events. The TPM MUST allow for the reporting
of the current audit log PCR value. The value that the TPM adds to the TPM audit PCR MUST be the
TCPA_AUDIT_EVENT structure.

The TSS MUST provide a log of all TPM-generated events. The TPM will generate the event and the TSS
will fill in the event details. The TPM SHALL provide as much detail as it has available; however, the TSS
MUST fill in all remaining details for the audit event. For instance, the audit event will require a data and
time stamp on the event. There is no requirement for a clock function in the TPM, so the date and time
would come normally from the TSS.

The TPM MAY generate audit events for other functions and activities not on this list.

TCPA Main Specification Page 310

Version 1.1a 1 December 2001

10.8 Self-Tests
The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow the self-tests to
be run on demand. The response from the self-tests is pass or fail.

The TPM MUST complete the startup self-tests in a manner and timeliness that allows the TPM to be of
use to the BIOS during the collection of integrity metrics. The TPM MUST complete the required checks
before a given feature is in use. This requirement allows the TPM to test the integrity metric storage and
allow its use while simultaneously continuing to test the signature engine.

There are two sections of startup self-tests: required and recommended. The recommended tests are not
a requirement due to timing constraints. The TPM manufacturer should perform as many tests as possible
in the time constraints.

The TPM MUST report the tests that it performs.

The TPM MUST provide a mechanism to allow self-test to execute on request by any Challenger.

The TPM MUST provide for testing of some operations during each execution of the operation.

10.8.1 Required Self-Tests
The TPM MUST check the following:

• RNG functionality. This test follows FIPS 140-1, which checks the functioning of an RNG.

• Reading and extending the integrity registers. The self-test for the integrity registers will leave the
integrity registers in a known state.

• Testing the endorsement key pair integrity, if they exist. This requirement specifies that the TPM will
verify that the endorsement key pair can sign and verify a known value. This test also tests the RSA
sign and verify engine. If an endorsement key has not yet been generated the TPM action is
manufacturer specific.

• The integrity of the protected capabilities of the TPM. This means that the TPM must ensure that its
“microcode” has not changed, and not that a test must be run on each function.

• Any tamper-resistance markers. The tests on the tamper-resistance or tamper-evident markers are
under programmable control. There is no requirement to check tamper-evident tape or the status of
epoxy surrounding the case.

10.8.2 Recommended Checks
The TPM SHOULD check the following:

• The hash functionality. This check will hash a known value and compare it to an expected result.
There is no requirement to accept external data to perform the check. The TPM MAY support a test
using external data.

• Any symmetric algorithms. This check will use known data with a random key to encrypt and decrypt
the data.

• Any additional asymmetric algorithms. This check will use known data to encrypt and decrypt.

• The key-wrapping mechanism. The TPM should wrap and unwrap a key. The TPM MUST NOT use
the endorsement key pair for this test.

10.8.3 Self-Test Failure
When the TPM detects a failure during any self-test, the part experiencing the failure MUST enter a shut-
down mode. This shut-down mode will allow only the following operation to occur:

TCPA Main Specification Page 311

Version 1.1a 1 December 2001

• Update. The update function MAY replace invalid microcode, providing that the parts of the TPM that
provide update functionality have passed self-test.

All other operations will return the error code TCPA_FAILEDSELFTEST.

10.9 Object Reuse
The TPM MUST destroy and erase all temporal objects when the TPM finishes processing the object. The
use of an object can be a long-term operation. For instance, the TPM could load an identity key and keep
the key in memory while performing multiple challenge and response operations. There is no requirement
to unload the object after each operation, but there is a requirement that the object be properly disposed
of when all operations are complete.

When an internal TPM process uses objects, no information regarding the object may be available to
outside processes. The TPM MUST enforce access control to all objects carrying sensitive information.

10.10 Maintenance
Start of informative comment:

The maintenance feature is a vendor-specific feature, and its implementation is vendor-specific. The
implementation must, however, meet the minimum requirements as defined in section 7.2.13 so that one
implementation of the maintenance feature does not provide a hole into the TCPA system.

There is no requirement that the maintenance feature be available, but if it is implemented, then the
requirements must be met.

The maintenance feature described in the specification is an example only, and not the only mechanism
that a manufacturer could implement that meets these requirements.

End of informative comment.
The maintenance feature MUST ensure that the information can be on only one TPM at a time.
Maintenance MUST ensure that at no time the process will expose a shielded location. Maintenance
MUST require the active participation of the Owner.

10.11 Backup
Start of informative comment:

The purpose of backup is to take a key and move it to another TPM. The backup mechanism must move
only migratable information.

The blob that the backup feature creates must be usable by any other TPM. This requirement holds only
for keys and data that are usable by all TPMs. For example, there is no requirement that a 768-bit RSA
key be acceptable by all TPM devices. The migration of information has a guarantee only when the key
uses one of the required sizes.

End of informative comment.

The TPM MUST support the backup feature. The TPM MUST create a blob of migratable data that is
readable by any other TPM. A receiving TPM MAY reject a backup blob if the underlying information is a
non-standard size or algorithm.

10.12 Strength of Function
Start of informative comment:

The common criteria defines Strength of Function (SOF) as a qualification of a Target of Evaluation (TOE)
security function expressing the minimum efforts assumed necessary to defeat its expected security
behavior by directly attacking its underlying security mechanisms.

Here are some definitions for the common SOF criteria:

TCPA Main Specification Page 312

Version 1.1a 1 December 2001

• SOF-basic. A level of the TOE SOF where analysis shows that the function provides adequate
protection against casual breach of TOE security by attackers possessing a low attack potential.

• SOF-medium. A level of the TOE SOF where analysis shows that the function provides adequate
protection against straightforward or intentional breach of TOE security by attackers possessing a
moderate attack potential

• SOF-high. A level of the TOE SOF where analysis shows that the function provides adequate
protection against a deliberately planned or organized breach of TOE security by attackers
possessing a high attack potential

There is no single overall SOF definition; instead, each operation needs a review of what the SOF should
be. The Protection Profile will specify the SOF for each operation, command, function, and so on.. For
instance, the SOF for protection of the endorsement key pair will be SOF-high, but the SOF for tamper
resistance will be SOF-basic.

The testing lab will determine if a specific security target implementation of the Protection Profile meets
the SOF level. This specification will not specify definition of the SOF as this metric is an ever-changing
value. That is, what was high a few years ago is now not even at the basic level. It is certainly possible
that a device that receives certification will not pass given changes in the SOF definition in the future.

End of informative comment.

The TPM MUST report the SOF values to a Challenger and the SOF values MUST be part of the TPM
endorsement certificate and the platform conformance certificate.

10.13 Physical Protection
Start of informative comment:

The main reason for inclusion of FIPS 140 is to specify the physical security requirements on a TPM. If a
TPM manufacturer wishes to obtain full FIPS certification there are additional requirements that are not
specified in the TCPA documentation.

End of informative comment.

TPM MUST satisfy the FIPS 140-1 (or it’s successor) level 2 physical security requirements, or it's
equivalent.

10.14 Protection Profile
Start of informative comment:

The TCPA specification will use two Protection Profiles to judge conformance with the specification. They
are the TCPA Trusted Platform Module Protection Profile (TCPA-TPMPP) and the TCPA Trusted Platform
Conection Protection Profile (TCPA-TPCPP).

The TPMPP provides the evaluation of a TPM. The security targets that reference this Protection Profile
will provide the mechanism for platform manufacturers to judge between different TPM providers. The
TOE for the TPMPP covers just the TPM and does not include any TSS functionality.

The TPCPP provides the evaluation of the connection of the TPM to the platform and the connection of
the RMT to the platform and TPM. The security targets that reference this Protection Profile will provide
the mechanism for platform purchasers the ability to judge between different platforms. The TOE for the
TPCPP will include the TPMPP.

The Protection Profiles are separate documents and refer back to this specification. The following
discussion of the Protection Profiles is for reference only, and the actual text of the profiles supersedes
any comments in this section.

The basis of the Protection Profiles is the attack tree that shows the threats against the TPM and TSS.
The attack tree is a separate document that is an inherent part of this specification. The basic design

TCPA Main Specification Page 313

Version 1.1a 1 December 2001

point for the attack tree is that the TPM should be resistant to all software attacks and somewhat resistant
to hardware attacks.

End of informative comment.

10.15 Compliance to Specification
Start of informative comment:

The TCPA does not evaluate compliance to this specification directly. The evaluation of compliance to the
specification comes from the manufacturer creating a security target that meets the Protection Profile
(either TPMPP or TPSPP).

After the TCPA creates a Protection Profile, each manufacturer has the option of creating a security
target to evaluate against the Protection Profile. This security target is implementation-specific and could
cover either a machine or an application using the profile.

The evaluation of a security target provides assurances to the buying public that the manufacturer has
created a secure interoperable system.

End of informative comment.

10.16 Field Upgrade
Start of informative comment:

A TPM, once in the field, may have need to update the protected capabilities. This command, which is
optional, provides the mechanism to perform the update.

End of informative comment.

The TPM SHOULD have provisions for upgrading the subsystem after shipment from the manufacturer. If
provided the mechanism MUST follow the requirement from section 8.16 .

10.17 Physical Presence or Access
Start of informative comment:

This specification includes commands which require "local" or "physical" presence at the platform before
the command will operate. The intention is that these commands cannot be activated without
authorization provided by direct interaction with a person

It must be possible to control a TPM. Such controls include those to clear an existing Owner from the
TPM, temporarily deactivate a TPM, and temporarily disable a TPM. Some such commands must work
without conventional authorization information, because they will be required when the necessary
authorization information is unavailable (because there is no Owner or because the authorization
information has been lost). Such commands are subject to "denial of service" attacks, and ideally require
other forms of authorization

Some commands are therefore prescribed to require physical presence (of a person) at the platform
before the command will operate. Such commands could be authorised with or by purely physical or
electrical methods, or with or by physical presence detected using software when the platform is in a
restricted state. Such authorization is difficult or impossible to reproduce by rogue software, depending on
the exact method of implementation. The actual method of implementation of such authorization is the
choice of the manufacturer. The overall strength of such authorization is reflected in the "security target"
of the platform.

In a PC, such authorization might be implemented using direct electrical connections from a switch, or
using software during the POST

End of informative comment.

TCPA Main Specification Page 314

Version 1.1a 1 December 2001

The requirement for physical presence MUST be met by the platform manufacturer using some physical
mechanism.

10.17.1 TSC_PhysicalPresence
Start of informative comment:

Some TPM operations require an indication of an owner’s physical presence at the platform. These are
administrative operations that need to function when the owner’s authentication materials are not
available. An indication of physical presence is an alternate method for proving ownership of the platform.
Generally this is implemented using a hardware signal generated as a result of an owner’s physical action
such as changing an internal switch, jumper, or button. However, the architecture or design of some
platforms prevent this from being a cost effective implementation.

This operation provides a method for the platform to provide proof of physical presence using the state of
the platform and user action. The platform has the option to attach a hardware signaling mechanism to
the TPM or use this command in the absence or in conjunction with a hardware signal.

The values of the PhysicalPresence and PhysicalPresenceLock flags are preserved by TPM_SaveState
and TPM_Startup(stType = TCPA_ST_STATE) to prevent changing the flag while in any of the platform’s
power suspend states.

Note: This operation does not affect the state of the indication of unambiguous physical presence which
may be the same or same hardware signal, depending on implementation.

While not a requirement, it is likely the following flags will be set by the Platform manufacturer in a single
operation prior to shipment to the owner:

• physicalPresenceLifetimeLock = TRUE,

• physicalPresenceHWEnable = Design and owner requirements dependent, and

• physicalPresenceCMDEnable = Design and owner requirements dependent.
End of informative comment.
Type
TCPA connection capability. Optional function this functionality can be implemented by any vendor
specific command

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of
TSC_ORD_PhysicalPresence.

4 2 TCPA_PHYSICAL_
PRESENCE physicalPresence The state to set the TPM’s Physical Presence flags.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

TCPA Main Specification Page 315

Version 1.1a 1 December 2001

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3 of Main
Specification.

Descriptions
This command must implemented in the TPM, however support for all of the bits is optional.

The operation sets the state of the physicalPresenceLifetimeLock, physicalPresenceHWEnable, and
physicalPresenceCMDEnable flags to indicate how physical presence is to be indicated. It also sets the
PhysicalPresence and PhysicalPresenceLock flags, if enabled, during operation of the Platform to
indicate physical presence. This is a bit mask allowing a combination of flags to be set in a single
operation.

Note: The TPM_PhysicalEnable requires unambiguous evidence of the presence of physical access. This
is a higher level of proof than the other “physical presence” commands. A PhysicalPresence flag set to
TRUE, SHALL NOT be sufficient proof to permit execution of TPM_PhysicalEnable unless it is impossible
for software to subvert the TSC_PhysicalPresence command.

Actions
1. This operation MUST be implemented to process the values in the following order:

a. physicalPresenceHWEnable and physicalPresenceCMDEnable

b. physicalPresenceLifetimeLock

c. PhysicalPresence

d. PhysicalPresenceLock

2. Once the PhysicalPresenceLock flag is set to TRUE, the TPM MUST not modify the
PhysicalPresence flag until a TPM_Init followed by TPM_Startup(stType = TCPA_ST_CLEAR). Upon
a TPM_Init and TPM_Startup(stType = TCPA_ST_STATE) the TPM MUST set the
PhysicalPresenceLock flag to FALSE.

3. If the PhysicalPresenceLock flag is set to TRUE upon any call to this operation, the TPM MUST
cause no action and MUST return the error TCPA_BAD_PARAMETER.

TCPA Main Specification Page 316

Version 1.1a 1 December 2001

10.18 Other Specifications
Start of informative comment:
There are other security specifications and this section describes them and what level of compliance the
TCPA may have with them.

• Rainbow Series: The Rainbow Series of specifications is being phased out by Protection Profiles.
There is no requirement that the TCPA be Orange Book compatible.

• ITSEC: ITSEC is a European standard that is being phased out by Protection Profiles. There is no
requirement that TCPA use any ITSEC specifications.

• FIPS: The FIPS 140 specification covers cryptographic modules and the hardware implementation of
these modules. In many ways, Protection Profiles and FIPS overlap. Some of the FIPS 140
requirements are specified in this specification; however, compliance with the entire specification is
not required.

End of informative comment.

Individual manufacturers MAY do the additional design and testing to obtain a FIPS 140 certification, but
there is no requirement that a TCPA device obtain this testing.

Specifications or standards included in this specification

• PKCS#1: RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) Version 2.0

o RSAES_OAEP (2.0)

o RSASSA-PKCS1-v1_5

• ITU-T Recommendation X.509 | ISO/IEC 9594-8: “Information technology - Open Systems
Interconnection – The Directory: Public-key and attribute certificate frameworks”, 4th Edition.

• DES/3DES: Data Encryption Standard FIPS 46-3 (DES) : National Institute of Standards and
Technology

• ASN.1: Abstract Syntax Notation One : ITU-T Recommendations X.680-X.683

• FIPS 140-1: Federal Information Processing Standards Publication 140-1 “Security Requirements
for Cryptographic Modules”

• BER: Basic Encoding Rules : ITU-T Recommendation X.690-691 (1997)

• ISO 15408 (Common Criteria)

• SHA-1: Secure Hash Algorithm : NIST FIPS PUB 180-1, “Secure Hash Standard,” : National
Institute of Standards and Technology

• RFC 2104 (HMAC)

TCPA Main Specification Page 317

Version 1.1a 1 December 2001

Appendix A: Glossary
3DES

DES using a key of a size that is 3X the size that of a DES key. See DES.

Blob
Opaque data of fixed or variable size. The meaning and interpretation of the data is outside the scope
and context of the Subsystem.

Challenger
An entity that requests and has the ability to interpret integrity metrics from a Subsystem.

Conformance Credential
A credential that states the conformance to the TCPA specification of: the TPM; the method of
incorporation of the TPM into the platform; the RTM; and the method of incorporation of the RTM into the
platform.

Denial-of-service attack

A attack on a system (or subsystem) which has no affect on information except to prevent its use.

DES

Symmetric key encryption using a key size of 56 bits defined by NIST as FIPS 46-3. Reference
http://csrc.ncsl.nist.gov/cryptval/des.htm.

Endorsement Credential
A credential containing a public key (the endorsement public key) that was generated by a genuine TPM.

Endorsement Key
A term used ambiguously, depending on context, to mean a pair of keys, or the public key of that pair, or
the private key of that pair; an asymmetric key pair generated by a TPM that is used as proof that a TPM
is a genuine TPM; the public endorsement key (PUBEK); the private endorsement key (PRIVEK).

Identity Credential
A credential issued by a Privacy CA that provides an identity for the TPM.

Integrity metric(s)
Values that are the results of measurements on the integrity of the platform.

Man-in-the-middle attack

An attack by an entity intercepting communications between two others without their knowledge and by
intercepting that communication is able to obtain or modify the information between them.

Migratable

A key which may be transported outside the specific TPM.

Non-Migratable

A key which cannot be transported outside a specific TPM; a key that is (statistically) unique to a
particular TPM.

Non-Volatile
Storage location or memory that retain their values after power-off or a TPM_Init function.

Owner
The entity that owns the platform in which a TPM is installed. Since there is, by definition, a one-to-one
relationship between the TPM and the platform, the Owner is also the Owner of the TPM. The Owner of

http://csrc.ncsl.nist.gov/cryptval/des.htm

TCPA Main Specification Page 318

Version 1.1a 1 December 2001

the platform is not necessarily the “user” of the platform (e.g., in a corporation, the Owner of the platform
might be the IT department while the user is an employee.) The Owner has administration rights over the
TPM.

PKI Identity Protocol
The protocol used to insert anonymous identities into the TPM.

Platform Credential
A credential that states that a specific platform contains a genuine TCPA Subsystem.

POST

POST refers to the Power On Self Test performed by a PC.

Protection Profile

A document that defines all attacks and how they are resisted by the TPM, the RTM, and the methods by
which they are incorporated into the platform.

Privacy CA
An entity that issues an Identity Credential for a TPM based on trust in the entities that vouch for the TPM
via the Endorsement Credential, the Conformance Credential, and the Platform Credential.

Private Endorsement Key (PRIVEK)

The private key of the key pair that proves that a TPM is a genuine TPM. The PRIVEK is (statistically)
unique to only one TPM.

Public Endorsement Key (PUBEK)

A public key that proves that a TPM is a genuine TPM. The PUBEK is (statistically) unique to only one
TPM.

Random number generator (RNG)
A pseudo-random number generator that must be initialized with unpredictable data and provides,
“random” numbers on demand.

Root of Trust for Measurement (RTM)
The point from which all trust in the measurement process is predicated. The RTM contains many
components to provide this level of trust. The design document shows that the RTM includes a core
component, the computing engine to run the core component, physical connections of the core and the
computing engine and other items.

Root of Trust for Reporting (RTR)
The point from which all trust in reporting of measured information is predicated.

Root of Trust for Storing (RTS)
The point from which all trust in Protected Storage is predicated.

RSA

An (asymmetric) encryption method using two keys: a private key and a public key. Reference:
http://www.rsa.com .

SHA-1

A NIST defined hashing algorithm producing a 160 bit result from an arbitrary sized source as specified in
FIPS 180-1. Reference: http://csrc.ncsl.nist.gov/cryptval/shs.html.

Storage Root Key (SRK)

http://www.rsa.com/
http://csrc.ncsl.nist.gov/cryptval/shs.html

TCPA Main Specification Page 319

Version 1.1a 1 December 2001

The root key of a hierarchy of keys associated with a TPM; generated within a TPM; a non-migratable
key.

Subsystem

The combination of the TSS and the TPM.

Support Services (TSS)
Services to support the TPM but which do not need the protection of the TPM. The same as Trusted
Platform Support Services.
Trusted Building Block (TBB)
A trusted Platform is instantiated as a Trusted Building Block (TBB) which is the evaluated component of
a trusted system. The TBB is composed of the TPM, the Core RTM and the connection between them.
TCPA-protected capability
 A function which is protected within the TPM, and has access to TPM secrets.

TPM Identity

One of the anonymous PKI identities belonging to a TPM; a TPM may have multiple identities.

TPM POST

TPM POST refers to the Power On Self Test performed by a TPM.

Trusted Platform Agent (TPA)
Trusted Platform Agent; the component within the platform that reports integrity metrics, logs, Validation
Data, etc. to a Challenger; outside the scope of this specification.

Trusted Platform Measurement Store (TPMS)
Storage locations within the Subsystem, which contain unprotected logs of measurement process.

Trusted Platform Module (TPM)
The set of functions and data that are common to all types of platform, which must be trustworthy if the
Subsystem is to be trustworthy; a logical definition in terms of protected capabilities and shielded
locations.

Trusted Platform Support Services (TSS)
The set of functions and data that are common to all types of platform, which are not required to be
trustworthy (and therefore do not need to be part of the TPM).

User
An entity that uses the platform in which a TPM is installed. The only rights that a User has over a TPM
are the rights given to the User by the Owner. These rights are expressed in the form of authorization
data, given by the Owner to the User, that permits access to entities protected by the TPM. The User of
the platform is not necessarily the “owner” of the platform (e.g., in a corporation, the owner of the platform
might be the IT department while the User is an employee). There can be multiple Users.

Validation Credential
A credential that states values of measurements that should be obtained when measuring a particular
part of the platform when the part is functioning as expected.

Validation Data

Data inside a Validation Credential; the values that the integrity measurements should produce when the
part of a platform described by the Validation Credential is working correctly.

Validation Entity

TCPA Main Specification Page 320

Version 1.1a 1 December 2001

An entity that issues a Validation Certificate for a component; the manufacturer of that component; an
agent of the manufacturer of that component.

Volatile
Storage locations or memory that are either set to a predefined value (e.g.,zero) or have values that are
undefined upon completion of a power-on or TPM_Init function.

TCPA Main Specification Page 321

Version 1.1a 1 December 2001

Appendix B: Key Usage Table
This table summarizes the types of keys associated with a given TPM command.

 First Key
Second
Key

Se
ct

io
n

N
am

e

Fi
rs

t K
ey

Se
co

nd
 K

ey

SI
G

N
IN

G

ST
O

R
A

G
E

ID
EN

TI
TY

A

U
TH

C
H

G

B
IN

D

LE
EG

A
CY

SI

G
N

IN
G

ST

O
R

A
G

E
ID

EN
TI

TY

A
U

TH
C

H
G

B

IN
D

LE

G
A

C
Y

5.6.1 TPM_ChangeAuth parent blob x x x x x x
5.2.5 TPM_OSAP entity x x x x x x
5.7.1 TPM_ChangeAuthAsymStart idKey ephemeral x x
5.7.2 TPM_ChangeAuthAsymFinish parent ephemeral x x
6.3.3 TPM_Quote key x x x
7.2.1 TPM_Seal key x
7.2.2 TPM_Unseal parent x
7.2.4 TPM_UnBind key x x
7.2.5 TPM_CreateWrapKey parent x
7.2.8 TPM_LoadKey parent inKey x x x x x x
7.2.10 TPM_GetPubKey key x x x x x x
7.2.11 TPM_CreateMigrationBlob parent blob x x x x x
7.2.12 TPM_ConvertMigrationBlob parent x
8.3.1 TPM_CertifyKey certKey inKey x x x x x x x x
8.7.1 TPM_Sign key x x
8.9.2 TPM_CertifySelfTest key x x x
8.11.2 TPM_GetCapabilitySigned key x x x
8.12.2 TPM_GetAuditEventSigned key x x x
9.3.4 TPM_ActivateIdentity idKey x

	Forward
	The Trusted Platform Subsystem
	Introduction
	Roots of Trust
	Definitions
	Instantiations and Trust Bindings

	Integrity Operations
	Storage of Integrity Metrics
	Reporting of Integrity Metrics

	Use of Keys Associated with TPM Identities
	Cryptographic Operations
	Opting to use a TPM
	Enabling Ownership
	Activating a TPM
	Selected operations

	Protected, Unprotected, and Connection Operations

	Protection
	Introduction
	Threat
	Integrity
	Privileged Access
	Side effects

	Structures and Defines
	
	Endness of Structures
	Byte Packing
	Lengths

	Defines
	Basic data types
	Boolean types
	Vendor specific

	Return codes
	Command Specification Table Description
	Introduction, Definition of Terms
	HMAC Calculation for Authorization
	Parameter List Tag Identifiers

	TCPA_VERSION
	TCPA_DIGEST
	TCPA_NONCE
	TCPA_AUTHDATA
	TCPA_KEY_HANDLE_LIST
	TCPA_KEY_USAGE values
	Mandatory Key Usage Schemes

	TCPA_AUTH_DATA_USAGE values
	TCPA_KEY_FLAGS
	Flags and persistent data structures
	TCPA persistent data
	TCPA_PERSISTENT_FLAGS Structure
	TCPA_VOLATILE_FLAGS Structure

	TCPA_PAYLOAD_TYPE
	TCPA_ENTITY_TYPE
	TCPA_STARTUP_TYPE
	TCPA_PROTOCOL_ID
	TCPA_ALGORITHM_ID
	TCPA_PHYSICAL_PRESENCE
	TCPA_RSA_KEY_PARMS

	TCPA_CHANGEAUTH_VALIDATE
	TCPA_MIGRATE_SCHEME
	TCPA_MIGRATIONKEYAUTH
	TCPA_AUDIT_EVENT structure
	PCR Structures
	TCPA_EVENT_CERT
	TCPA_PCR_EVENT
	TCPA_PCR_SELECTION
	TCPA_PCR_COMPOSITE
	TCPA_PCR_INFO

	Storage Structures
	TCPA_STORED_DATA
	TCPA_SEALED_DATA
	TCPA_SYMMETRIC_KEY
	TCPA_BOUND_DATA

	TCPA_KEY complex
	TCPA_KEY
	TCPA_STORE_PUBKEY
	TCPA_PUBKEY
	TCPA_STORE_ASYMKEY
	TCPA_STORE_PRIVKEY
	TCPA_MIGRATE_ASYMKEY

	TCPA_CERTIFY_INFO Structure
	TCPA_QUOTE_INFO Structure
	Identity Structures
	TCPA_IDENTITY_CONTENTS
	TCPA_IDENTITY_REQ
	TCPA_IDENTITY_PROOF
	TCPA_ASYM_CA_CONTENTS
	TCPA_SYM_CA_ATTESTATION

	TCPA_CAPABILITY_AREA
	Credentials
	Evidence of Subsystem Endorsement
	Evidence of Platform Endorsement
	Evidence of Platform Conformance
	TCPA Validation Data
	Evidence of Trusted Platform Module Identity

	Command Ordinals

	Authorization and Ownership
	Introduction
	Tag Usage

	Authorization protocols
	OI-AP description
	TPM_OIAP
	Authorization using an OI-AP session
	OS-AP Description
	TPM_OSAP
	Authorization using an OS-AP session

	TPM_Terminate_Handle
	ADIP – Creating a New Entity
	ADCP - Changing Authorization Data
	Changing authorization values
	TPM_ChangeAuth
	TPM_ChangeAuthOwner

	Asymmetric Authorization Change Protocol
	TPM_ChangeAuthAsymStart
	TPM_ChangeAuthAsymFinish

	Authorization Data
	Nonces
	Authorization Handle
	TPM Ownership
	TPM_TakeOwnership

	Integrity Collection and Reporting
	Introduction
	Platform Configuration Registers
	Format and Properties
	Initialization
	Authorized PCRs

	Operations Supporting Integrity Collection and Reporting
	TPM_Extend
	TPM_PcrRead
	TPM_Quote
	TPM_DirWriteAuth
	TPM_DirRead

	Protected Storage
	Introduction
	Characteristics
	Key Storage

	Mandatory Functions
	TPM_Seal
	TPM_Unseal
	TSS_Bind
	TPM_UnBind
	TPM_CreateWrapKey
	TSS_WrapKey
	TSS_WrapKeyToPcr
	TPM_LoadKey
	TPM_EvictKey
	TPM_GetPubKey
	TPM_CreateMigrationBlob
	TPM_ConvertMigrationBlob
	TPM_AuthorizeMigrationKey

	TPM Optional Functions: Maintenance
	TPM_CreateMaintenanceArchive
	TPM_LoadMaintenanceArchive
	TPM_KillMaintenanceFeature
	TPM_LoadManuMaintPub
	TPM_ReadManuMaintPub

	Cryptographic and Miscellaneous Functions
	Introduction
	TPM Hash Operations
	TPM_SHA1Start
	TPM_SHA1Update
	TPM_SHA1Complete
	TPM_SHA1CompleteExtend

	Key Certification
	TPM_CertifyKey

	TPM Internal Asymmetric Encryption
	TCPA_ES_RSAESOAEP_SHA1_MGF1
	TCPA_ES_RSAESPKCSV15

	TPM Internal Digital Signatures
	TCPA_SS_RSASSAPKCS1v15_SHA1
	TCPA_SS_RSASSAPKCS1v15_DER

	HMAC Calculation
	Digital Signatures
	TPM_Sign
	TSS_VerifySignature

	Random Numbers
	TPM_GetRandom
	TPM_StirRandom

	Self Test
	TPM_SelfTestFull
	TPM_CertifySelfTest
	TPM_ContinueSelfTest
	TPM_GetTestResult

	Reset and Clear Operations
	TPM_Reset
	TPM_Init
	TPM_SaveState
	TPM_Startup
	TPM_OwnerClear
	TPM_DisableOwnerClear
	TPM_ForceClear
	TPM_DisableForceClear

	The GetCapability Commands
	TPM_GetCapability
	TPM_GetCapabilitySigned
	TPM_GetCapabilityOwner

	Audit Commands
	TPM_GetAuditEvent
	TPM_GetAuditEventSigned
	TPM_SetOrdinalAuditStatus
	TPM_GetOrdinalAuditStatus
	Effect of audit failing after successful completion of a command

	Enabling Ownership
	TPM_SetOwnerInstall

	Enabling a TPM
	TPM_OwnerSetDisable
	TPM_PhysicalDisable
	TPM_PhysicalEnable

	Activating a TPM
	TPM_PhysicalSetDeactivated
	TPM_SetTempDeactivated

	TPM_FieldUpgrade
	TPM_SetRedirection
	Key and Session Management
	TPM_SaveKeyContext
	TPM_LoadKeyContext

	Authorization Context Management
	TPM_SaveAuthContext
	TPM_LoadAuthContext

	Subsystem Credentials
	Introduction
	Endorsement
	TPM_CreateEndorsementKeyPair
	TPM_ReadPubek
	TPM_DisablePubekRead
	TPM_OwnerReadPubek

	Generating a Trusted Platform Module Identity
	TPM_MakeIdentity
	TSS_CollateIdentityRequest
	Contacting a Privacy CA
	TPM_ActivateIdentity
	TSS_RecoverTPMIdentity

	Instantiation of Data When Contacting a Privacy CA
	From Owner to Privacy CA
	From Privacy CA to Owner

	Instantiation of Credentials as Certificates
	Instantiation of TPM_ENDORSEMENT_CREDENTIALs
	Instantiation of PLATFORM_CREDENTIAL
	Instantiation of TPM_CONFORMANCE_CREDENTIAL
	Instantiation of VALIDATION_DATA
	Instantiation of TPM_IDENTITY_CREDENTIAL
	ASN.1 Definitions

	Conformance Criteria
	Base Levels for Interoperability
	Conformance Specification Sheet
	Protocol Negotiation and Algorithm Agility
	Cryptographic Algorithms and Protocols
	Asymmetric
	Symmetric
	Hashing
	Signature Operations
	Creating a PCR composite hash
	Creating TCPA_CHOSENID_HASH
	Using Secret Keys

	Random Number Generator (RNG)
	Entropy Source and Collector
	State Register
	Mixing Function
	RNG Reset

	Key Generation
	Asymmetric
	Symmetric
	Nonce Creation

	Auditing
	Self-Tests
	Required Self-Tests
	Recommended Checks
	Self-Test Failure

	Object Reuse
	Maintenance
	Backup
	Strength of Function
	Physical Protection
	Protection Profile
	Compliance to Specification
	Field Upgrade
	Physical Presence or Access
	TSC_PhysicalPresence

	Other Specifications

	Appendix A: Glossary
	Appendix B: Key Usage Table

