Trusted Computing

Platform Alliance
(TCPA)

Main Specification
Version 1.1a

Copyright © 2000-2001 Compaq Computer Corporation, Hewlett-Packard Company, IBM Corporation,
Intel Corporation, Microsoft Corporation

All rights reserved.
DISCLAIMERS:

THIS SPECIFICATION IS PROVIDED “AS I1S” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION,
OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO THE USE OF THE INFORMATION IN
THIS SPECIFICATION AND TO THE IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.
COMPAQ, HP, IBM, INTEL, AND MICROSOFT, DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

WITHOUT LIMITATION, COMPAQ, HP, IBM, INTEL, AND MICROSOFT DISCLAIM ALL LIABILITY FOR
COST OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF
USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY
WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR ANY INFORMATION HEREIN.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

TCPA Main Specification Page ii

Acknowledgement

TCPA wishes to thank members of the PKI, PC Specific and Conformance Workgroup who contributed
expertise and text to this document. Thanks must be given to the members of the TCPA Technical
Committee who were Michael Angelo, Boris Balacheff, Josh Benaloh, David Challener, Dhruv Desai,
Paul England, David Grawrock, Bob Meinschein, Manny Novoa, Graeme Proudler, Jim Ward and Monty
Wiseman.

David Chan

Technical Committee Chair

Version 1.1a 1 December 2001

TCPA Main Specification

Page iii

Change History

Version Date Description

0.44 July 2000 Voted by members as appropriate for public release
with modifications.

0.90 August 2000 First version released to public.

0.91 October 26, 2000 Remove chapters 1 & 2. Complete reformat

0.92 4 November, 2000 Added new chapter for structures, updated
functions to match IDL, editing changes.

1.0RC1 28 November 2000 Incorporated comments cleaned up structures and
made ready for publication.

1.0 RC2 11 December 2000 Incorporated changes from reflector.
Added new change authorization command.

1.0RC4 10 Jan 2001 Incorporated changes and fixed up IDL

1.0 RC5 11 Jan 2001 PKCS#1 changes

1.01 17 April 2001 Implemented corrections. Mid point save made to
avoid problems with track changes in document

1.02 18 April 2001 Continue with changes for 1.1 release, changed IDL
to table format

1.03 First attempt to reconcile IDL misses

1.04 7 May 2001 Mid level drop to show all changes in regard to IDL

1.06 17 May 2001 All CR’s complete

1.07 22 May 2001 Cleanup from WG messages and changing in Audit
commands.

1.1 RC1 25 May 2001 Release candidate for specification

1.1 RC2 4 June 2001 All changes

1.1 RC3 12 June 2001 Removal of TSS commands, cleanup of parameter
blocks, all comments from v1 reflector.

1.1 RC4 5 July 2001 Editing changes, candidate for final review

1.1 RC6 17 July 2001 All changes made and version ready for voting

1.1 31 July 2001 Voted on release of 1.1

1.1a 12" November 2001 Includes all errata upto and including #55

Version 1.1a 1 December 2001

TCPA Main Specification Page v
Table Of Contents
I il Forward 1
B VS (10 B od PN (O A0 A IS SN ASE (= 1 1 I 4
2.1 INEFOUCTION .. 2
rm .. Z
55— Ppefmors——o-—oH——H—>——H———mrir"- 3
Ir 2 22 lnstantiations and Trust Rlndlngc 3
[ty Operaiions 5
P.3.1 Storage Of INTEGIity METIICSeiiiii i e e e e e 5
2.2 Reporting of Integrity Metrics 5]
| |4.L USE Of REYS ASSOCTatEd WitlT T PV e T S i T
25 (‘rypmgraphlc Oppmrmnc iy
2.0 [@Je] (110 MoV T Ir- W I =d |/ I O
p.6.1 ENabling OWNEISIIP.......ciiiiiiiie et ees 9
| P 5.2 JAYS 1 \VZ= 1A [10 I= N I d Y P 9
F.0.0 QicilcU UpcldUUI IS i
!2 / Protected, Unprotected, and Connection Operations 13
B ——Protecion———o 7]
3.1 LY 0T [0 T3 1o o T 14
3.2 | AT 14
S LU L1 AT T T T TP T TR 15
34 Prl\/ﬂpgpd Access 15
9.0 NI [EE S IS S 15
IﬁT. SHrUCTUrES AN DEFINES ... ettt ettt et e e ettt e e e e e e e e e aa bt s e e e e eesesbab e aiaaeeaeaaees 16
LT L0l ATSISIS) I L (001 10|
i e BzT.c Pabking! .. 16
T3 Tengihs 16
|4.4 | D131 T T T PPN 17
4.2.1 BASIC A LYPES ..eeeiiiiiiie et 17
722 [SI010] (1210 MY O3 T U U T7
:‘.2.3 HC:}JCI ICL.IICﬁIIit;UI TO ceuenenensnsnananananasasasasasusunsnsasasasasasasssssasanasasasasaausasusananananananananananananananananaununs 17
42 4 Enumerated leppr redefinifions 18
25 Vvendorspecificrnrnnerrr T9
4.3 REIUIM COUBS ...uuniiiiiieieitce ettt et e e e e e e e ettt e e e e e e e eaa bt e e eeeeeeeabaa e seeesesssatannsaeeeeeeeeessraansnns 20
7.7 [SLe] il 1Al IS e [sTel N i [oF=1 (o] AN =N o] [SH B I=STod 0] [0 A U 23
74t mtrodouctiom Defmtomrof-ferms——— 23
Iz HMACT Calculation Tor Auihorization 23
243 | Eg= 1= 10 (S (S o S O =10 B L (<3111 (=) £ T T T T T P TP 24
|4.5 B IO YA] [SRR 25
40 | KO AN D) (G =i T T T T 20
A F—TCPANONCE 27
48 TCPA _AUTHDATA 28
4.9 |1 e N = A s TN B N = Y 29
4.10 TCPA _KEY _USAGE VAIUES...... oottt ettt ettt ettt ettt ettt a e e e n e n e e e aaa e e 30
FTU. L IVIQTTOCTOTY REOY U Ol D G I TTTE0 & v eewrssrrennsoornnnnoesennnsoeennnnsesnnnssossnnssoessnnssoessnsseeennssoeoennsseronns S
4.1¢ TCPA AUTH DATAUSAGEvatvtes 32
217 [CPA_KEY FTAGS.. 33
413 Flags and PersiStEnt 0ata SITUCIOTES -~ eeer oo oieer e ieeeseseereieerreseerreeeeeeees 34
T R O = AN L= Y KT =Yg T = - W O 35
L S A W) 2 W ol) IS Il A] Y AN IS TR 180410 (= T o7
3 S—FEPAVOEATHEFEAGS Stracttre 46
Z1Z [CPA_PAYIOAD TYPE ..o 73
7415 A1 AN =\ LI G I € = T T T T T Y Gz
4.16 TCPA _STARTUPR _TYPE. ... 45
Z L7 TCPA PROTOCOL TD i, 0]

Version 1.1a 1 December 2001

TCPA Main Specification

Page vi

4.18 TCPA _ALGORITHM ID it et e e e e e e e e e e s et e e e eaa e s eaaeeeeerans 47
4.1Y9 | AN o 5 NS (O Y N o e] o | | O T 40
A L 1L 2 2 N =3 S 2 41| s 49
WA_KFY_PARMQ 29
[4.2T TCPA CHANGEAU TH VALIDATE oo iiiiisiiisosisisioiorriooresioiorrsiiorrsioioreioorrriiies 51
[4.02 TCPA MIGRATE_SCHEME ... 52
2.23 | L9 57 ANV LT AN HLOIN LN A U1 1 & I T T TN 5o
A24 TCPAAUDIT EVENT Stroctore 54
ructures 1515)

Ao T N I N YA o\ I 4 50
41.25.2 TCPA PCR _EVENT oottt sttt ettt e e e e e st e e e e e e s e sns e e e e e e e sesnnstnaneeaeeesannnnrees 57
753 TOPA POR SFELEGTTON 59
A —FEPAPER COMPOSHFTE T 66
I_]D'E'E_'ITWWWFO Bl
4.75 STOTA0E STUCIUIES oo (574
41.26.1 TCPA _STORED DATA . ..ottt ettt ettt ettt et et ettt e tee et e ettt tatetatatatetetetatatatataaatatataaataeaees 62
AT LV 5 AN AN W B D7 AN AN 03|
26 83— TCPA SYMMETRIC KEY 64

-ﬂ 204 [CPA BOUND DAITA [¢19)
|4 27 | N AN = A {01 101)) ST 50
O 0 R I O = N = PPt 67
tﬁ?ﬁﬁﬁﬁﬁ PUBREY .. 6]
273 A PUBKEY e 69
FZ?TTCFFSTORE ASYMREY 0o o i o e i e e 70
275 TCPA STORE PRIVREY s 72]
.27.6 TCPA MIGRATE_ASYMEKEY ..oocoiiiiitiiiieie e e i ettt e e e e s ssete e e e e e s s snstntaeeeeaesssnssnneneaeeesnnnnsnens 73
478 A1 AN 4 L AL R RS 18 410 (- I T4
429 TEPA QUOTEINFS Stroctore 75
Z.30 [dentity Structures 76
1 30 TCPA IDENTITY CONTENT S s rrer oo rrre e iireeens 76
4.30.2 TCPA_IDENTITY _REQ .iiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeessseeeseseessssesesrsssesrrererrrrrerererrtreerrrrrrren 77
SO A R I 7 N 1 0t A O O A A PN TO]

- 304—TFEPAASYMECAECONTENT S 79
305 TCPA SYM CA ATTESTATION e 380
4.£HCP#C#P#BTI:FFY—RREH .. 8t
4.32 Credentials 2
321 Evidence of Subsysitem Endorsement 83
4.32.2 Evidence of Platform ENAOrSEMENTiiiiiiiiieiece e e e e e e e e eeaaaaas 85
4373 Fvidence ot Plaiorm coniormance 37
VAT T O 5 ANAVA- V1[0 [11 (0] 0 1 P 1= | = P T T T TN 89
325 Fvidence of Triisted Platform Modiile Idpnn'ry [¢T0)

|4. 53 C oMM aNd Ol Al S g7
B. AUthOrization and OWNEISNIDc..oevveiviiieeieiieeieeeeieieseeietsie et e e e seseeis s e sesseianeesas 96
o.1 | (a1 de]e [V i iTo] n NP Y0
|_$.l.1 T A T S AT 98
|R 2 Authorization protacols [e]e]
b2 T OT-AP deschpton . T0T]
b.2.2 I Y T 1 105
D23 AUNOTNZALION USING AN OT-AD SOOOION -ooes ittt et st st et ee et oot eeeeeeeeeeeees T06
.24 OS AP DESTHPIOT. 107
h 2 b TDM_OQAP 110
2.0 Autnorzation usiNng an OS-AP SESSION . .uee e eee ettt eee et et eeee ettt ieteeeeieeeieeeenaneens 117

53 TPM_Terminate_Handle.............coo i, 113
2.4 2 Bl | e S L N & A S N AT 114
55 ADCP —Clamgmy ATthorZzation Datel s Tt
[5.6 Changing aUuTNOMZATION VAIUES.o rrccesoceeeeseesmesmmeneaseeseesemesseessseaseesnesseesssmsseesseeneeneesseeees 118

Version 1.1a 1 December 2001

TCPA Main Specification Page vii

5.6.1 TPM_CRaNQEAULNceiie et e e e e s s e e e e e e s s e e e e e e e snnnnnreneeaaeeeans 118

b.0.2 |\ S A F= VAT e [A LA A1 ALY T = T 121

[|57 —AsymmetricAuthorization Clrange Protocor———————————— 23
b /.1 1PM_Change AuthAsymasiart 124

[$.7.2 Y S A VA0 (Y AN WL VAN] S P PP PP POO 127

[5.8 AUTNOMZATON DAKA ..o 129
D TN O G & eereerrsssosseisssosssssssissssisiisisiiiiiiiiiiiiiiiiiittctctccsrcses T30
5716 Authorizatomtanmde———/—"™"T"THTfi T T T/ 13%

I5 11 1PM me 152

1 $.J.J..J. I A = LGSO Y 11 O U 133

[B Integrity Collection and REPOIMINGccuerieiierieiieeeeeesieesieeseesseeseesteeteesteesseesseesseesseseseensesnes 135
[T0. & IMTOOUCHOTT T35]
02 P:atfullll CUIIf;yUIat;UII F‘\CUID‘[‘.CIQ .. 1SG

b 2 1 Eormat and Properfies 136

p.2.2 AT L EEN [L (o] 136

2.3 AULNOTIZEA PCRS ..ottt ettt ettt e e e et e et e e e e e e e e eab e e e eeeeeesaaaaeeeeseeessraanan 136
|_|'|5.: Operauons SUPPOTUNGg TNEOTTY CONECUON QN0 TREDOTUTTO &eerttossorreeeessssseeseesessssssoeeeereeessssoreeees 137
3 —FPMExtent e +37
2.2 1PM_Pcrkead 150

3.3 I\ 10 O] (= PP PP UUTPTN 139

5.3.4 TPM_DIrWIEEAULN ... 141
[P35 TPV DITREAT s 43

[.Y PretectedStorage——rrrrreeeeee 44
| |7ZIJ._ TN OQUCTION e 146
T.T charactensues 146
_%.1.2 [N ST ToT = Yo = TP 148

| | /.47 _ 4|V|an(_1'_<'f1_‘tf)‘ryﬁ|—ur]cuons .. J.,L_lg
L. L UL AR > < | I oo 1IU

2.2 [PM_Unseal 53

2.3 B IS T 5110 P PP PP PP PPN 156

[1.2.4 LI Y 11 =3 T T 157
2D I\ =22 LA TA T 021 0 AN =) T T T T T TP TSR TOU

26 FSSWHapKey 163

2.7 [SS _VVTAPREY TOPCT oo oeeeeeooeereoeeeeeeoeeeeeeereeeeeeeeeeeeeorereeerereeeeaeeeeeeereereeeeeereeeaeeeeeeeeeeeeeeaeeeee: 14

28 L 0= L8 |) P 165
720 m\/ihﬂ(ny 168
2.10 1PM GetPubkey 169

7.2.11 TPM_CreateMigrationBIODocueiiiiiiiiii e 170

217 TPM_ConvenMigrationBlob 173

P S S I d V(B2 O 100 (0] € P4 =317/ 1O L= 110101 AN =) TP U 175

| |7 3 TPM Optional Funciions' Maintenance 177
o1 | PV realelVIaINTeN AN Ce A Il ettt ettt ieeeiieeses 1/Y9

§.3.2 TPM_LoadMaintenanCeAIrChiVe ..., 181

.O.0 |1 =\ I N ET RN E R 1oo

-3 FPMtoadMamuoMamtPob 185
WR mpadManuMaian’uh 187
I_ﬁ Cryptographic and Miscellaneous FUNCIONS 188]
LS 70 a1 (o Yo [0 T3 1o TN 188

< A 1 =0\l 5 Y TN O 0 [T N T T39
2.1 LS T i AN A] - L S PPt 190

22 TPM_QHAHIpdafp 191

2.0 PM_SHAIComplee ... 197

2.4 TPM_SHALCOMPIEEEXIENT ... 193

| | L9 Key L,ertmcauo_n .. 194
831 B =1 11 4 AN = P o PP 194
ﬂmmncrypnon .. 197]

Version 1.1a 1 December 2001

TCPA Main Specification

Page viii

4.1 TCPA_ES_RSAESOAEP_SHAL MGFL....cco o 198

4.2 | O oo =R ST Y =S o A O A B 190

I_I_ ; LG AtE U P10 1= LS [0 L= LU | £ 198
oD JCPA 55 ROASSAPKCOSTVIL SHAT 198
5.2 TCPA SS RSASSAPRTSIVIS DER .. rceeeireereiiiiioirereeeisiiosrerreeeeses 199

[[8.6 HMAGC CalCUIALIONcvcvcvoveevoucesesessssesenenesesesesssssesssssssssssesssssessssnesnssnsnnnensnsnsnsnsnessnsnnees 199
[Ol DTOTO o O IO T C0 e rrerrreeerssosrrrerereeesesoarseerereeeseeoasseeseeeeeseeeesseereeeeeseesasssssseeeeessessssseeeeeseerasseerees Z00
Tt TPM—SionT 2660

B 77 1TSS VerifySignaiure 207]

| |‘873_Rou|dum A 111) 5PN 203
£.8.1 TPM_GELRANUOM ...ttt ettt e e s sttt e e e et e e e sbbe e e s anbaeeeeaneee 204

5. TTT oo eeeeeeoooooooooooooooooooooooooooeoeoeoooooeoeoeoeoeeicececieccecereccceccrecciciciciercicieriicccieiiiiiiies 205

| [Bg—sSetiFest—rr———— 266
R O01 1PM SelflestEll 20/
9.2 N Y IO AT | K] 208

9.3 TPM_ContiNUESEITESE.....co e, 210

0.0 [\ ST) W N S 3] | OO TSP ZIT

| | =40 ResetandClear Operatons——————— 232
[P I0 T TPM Reset 210

P O P I \"/ N |01 | TP TR 217

B30 TG T I oV S o Y3 = = SRR SPP 215

TOZ TPV ol D 217
%.10.5 FPM—OwWRerSlear ——————— 249
10.6__1PM_DisableOwnerClear 221

107 _TPNM_Forcectear 227

.10.8 TPM_DISADIEFOICECIRALNeeiiiiiiiiieiiiiiee ettt e et e e s sbbe e e e s sabeee e 223

Sl T o E L D i TT T T TTT LI 10000 v oo ewwwnnnnnnnooesssnnnnnnnnnserssssnnnnnnnnsesssssnnnnnnnssreeessnnnnnnnsseseoessnnsnnns 220
_ﬁ.ll.l FPM—GetCapabitty — 225
T1.2 1PN GeiCapabilitysigned 227

P S S I B T L= 1 0 1= 0 111 YA ATV [229
|:[8.12 F T LT R AT aT: TaLe 231
T A N B o\ B T =1 Va1 (0] |4 4= | PO 232
124 TP?V1_GCtAUdItEVCI ItSIUI ICd ... 233
etordnalAuanstails . Z35

M—GetOrdmatAuditStatus——

Ownership 24T

[8.13.1 TPM_SEIOWNEIINSIAIL. ...t 242

| ||814 Enabing a 1PM _ 243
I $.J.4.L TPV OWITET S eI D S A e o s ss s sssoo s orrrrrsrisiirssssiorirsrrsirriorrerrerriies 2474
81742 TPM PhysicalDisable 248
143 __[PM _PhvsicalEnable ... 746
I 247
[B.15.1 TPM_PhysicalsetDeactvated oo 2438

5 M—SetTempDeattivatet 249

816 W—I\/I_Iii_pllepgradp 2501
BI7 _ TPM SefRedirection 757
8.18 Key and Session MaNAgEMENTouuiiiiiiiiiee ittt eb e e e 254
1S e N N Y IS PN £ X O o T = A 7255
_$..Lb.£ I I"IVI_L()ddf\eyL’UHIEX[... 200

| 19 Authorization Context Managpmpnf 257
19T TPM_SaveAUTNTOMEXE s 758

19.2 0 TPM_LOAAAUINCONIEXL ... 259

B SUDSYSIEN CTEOCTINATS oo eer e e e e, Z00
I_ 9t mtroductomr 260
B = TR A = L P 260

Version 1.1a 1 December 2001

TCPA Main Specification Page ix

2.1 TPM_CreateENdorsementKeYPAINcc.uuviiieieeeiiiieiiir e e e e sese e e e e e e s strer e e e e e e s s nnnanaeeeees 261

2.2 |l A = X0 | U] €T T 203

2" —Di 5 L 2674

2.4 TPM:()WherpadPuhpk 200

I_I_;: Generatng a T rasted Pratform MOGUIE TOeITY - oo oeeeeeeoeoee e eeeeeeeeeeeeeeorireiceeereeeees 260
33.3.1 TPM _MAKEIAENTITYvovoeovoooososssisesesssesssenssissnensssssnssesssnsnsnsesssnsssssnnssssnnnsnsssnnnsenenes 269
R4 ISNSIRT0] A (] [0 A1 1AV RAI0 18 (1) P T 212

“.3.3 ContactmgaPrivecyCAMAMantnm 274
—Aclivateldentity 275

3. (SISO AL N V1 =10 111 TP TP T PP U OU PPN 277

[|94 Instantiation of Data When Contacting @ PrivaCy CAccccoceuiieveiiiciiiicieieicieieceieceeee, 278
941 FTOTTT OWITET T0 P TTVOICY oA teern ot eee e osoee e osoeeeseeeesossoeeonoseeeeoseeesenssoeeonoseerorsioeeorsiioeeriiiieiniiiees 270
\42 l':IUIII PI ;Vab_y CA tU CVVI e it isesnnasanasanasnnnsannsannsannsannsanssanssanssanssanssanssanssanssanssansnannnannnannnan 280

| | Instanfiafion of Credentials as Cerfificates 281
I b.b.l INStantation of TPM_ENDORSEMENT _CREDENTIALS e 282
_&g.Z Instantiation of PLATFORM_CREDENTIALcovviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 285
RNS! MolaNuaoON O 1PV CONF ORMANCE,. CIRED ETN T TAL &eootreroooree oo soeceesooecesoooceeoooees pasts]

$.5.4 stantiationmr of VARBDATHON BDATA 29%

_? D.D Instanuaton of TPM TDENTITY CREDENITIAL 294
956 YA P B =11 111() T PPN 298

[0. CONfOrMANCE CHIEEMIAcv.vceeeieceeiceeee et 300
TO.1 Bast LEVETS TOT METOPETAMY oo 300
102 CUI IfUI nmrarictc Spculfluatmu 1 Shcct ... 301
10.5 Protocol Negotiation and AlQorithim AQUILY veereereeereeereereenreereeereeieeereenreereeieeeieereeieesierzeereeiieens 302
104 CTYPTOgTapiiC ATGOTITITTIS G0 P OTOCOTS . oersrerrrrrsseereeeeerrrmreeseeeeeerrnsmeseeeeeeeeerrsmeeereeeeeeenrrooeeeees 303
TR 3y oY =Y (PR 303

D T T VEELTTCS wxwvwwn oo ooeewnnnnnnnnoosnnnnnnnnnnnooesssnnnnnnnnnoersessnnnnnnnossssssnnnnnnnnsesessnnnsnnnseseoesonnsnnssssoeoooorooee 303

A S—tHashint———— 364

O.Z4.Z Signature operations 307
1045 Creating a PCR COMPOSIE MaS e 305
[10.4.6 Creating TCPA_CHOSENID _HASH ... oo e e e e s nin e rnneninons 305

L A L © 51100 IS TS0 £ W AN /S S T 18]

| |105 Ral IdUIII :\\llulllbcl Gcncn:ltt.n (RI"\:G) .. 306
U.b.1 Eniropy source and collecior ..o 306
0:52—State R_cgiblcl .. 3u0_

0513 I\/Iiying Eunction 307

054 RNG Reset 30/

[[10.6 KEY GENEIALIONovvvieitiieteeieteeteteetete et e et ae et ettt et et et et et et ese et ete st eseesessssessssesessensasessasesenas 308
0.6.L Asymmetrc 308

LS R PP/ 0100 (=101 [T T T T TP 308

1 1063 Nonce Creation 208
IJ.U! 4 P AU Lo [l (] Ao P SUY
10.8 7= ol =T (TSP RTPUPPPOPP PR 310
U.0.1 RV INE | A N S o1U
082—Recommendedthecks ——— 77— 316

083 Self-Test Failure 310

| [T09 __ObecRewse. 317
0 It O |V = 11 1] g = g (o < 311
O = =T VT« CHNN

I0 12— SUengiT Of FUNMCHOIT 3t
1013 Dhymr‘al Protection 312

[10.14 | el s el (o) I S17
10.15 Compliance to SPeCIfiCatiON ..o 313
10.10 =[S RSl [T [T o515

B P O N w1075 (07 | g £ =4 (01 = 0 1 01 = PP 313

[JOT7 T TSC PRYSICAIPTESENCE .. s 314

Version 1.1a 1 December 2001

TCPA Main Specification Page x

10.18 Other SPECIfICALIONSueeiiiiiii i e s s s e e e e s s s ee e e e e e s s s aabaeereaeessannsnneeneeaesannnes 316
PADDENUIX A\ GTOSSATY - oreerreroerrrrereroereereerereereerrererrererrereereererrereereerereereereererrerereeeeereereerreeereerrreeeereerereeeeesees 317
Appendix B: Key Usade 1ablec..oveeieeeniiennieeiiieiieeniieesiieenieesieesieenieenieeesizeenreenzeenzeeizeenzzeeneeenneeen, o321

Version 1.1a 1 December 2001

TCPA Main Specification Page 1

1. Forward

This document is an industry specification that enables trust in computing platforms in general.

This specification defines a trusted Subsystem that is an integral part of each platform, and provides
functions that can be used by enhanced operating systems and applications. The Subsystem employs
cryptographic methods when establishing trust, and while this does not in itself convert a platform into a
secure computing environment, it is a significant step in that direction.

Standardization is necessary so that the security and cryptographic community can assess the
mechanisms involved, and so that customers can understand and trust the effectiveness of new features.
Manufacturers will compete in the marketplace by installing Subsystems with varying capabilities and cost
points. The Subsystem itself will have basic functions that maintain privacy, yet support the identity and
authentication of entities such as the platform, the user, and other entities. The Subsystem will have other
capabilities to protect data and verify certain operational aspects of the platform. It can be a separate
device or devices, or it can be integrated into some existing component or components provided the
implementation meets the requirements of this specification. This is necessary to achieve the
fundamental goal of ubiquity.

Please note a very important distinction between different sections of text throughout this document.
Beginning in chapter 2, “The Trusted Platform Subsystem,” you will encounter two distinctive kinds of text:
informative comment and normative statements. Because most of the text in this specification will be of
the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning
and end of each informative comment and highlighting its text in gray. This means that unless text is
specifically marked as of the kind informative comment, you can consider it of the kind normative
statements.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL" in the chapters 2-10 normative statements are to be
interpreted as described in [RFC-2119].

For example:

This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...
This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCPA specification the user must read the specification. (This use of MUST does not
require any action).

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind
normative statements ...

To understand the TCPA specification the user MUST read the specification. (This use of MUST indicates
a keyword usage and requires an action).

Version 1.1a 1 December 2001

TCPA Main Specification Page 2

2. The Trusted Platform Subsystem

2.1 Introduction
Start of informative comment:

The TCPA Subsystem design is to provide useful trust and security capabilities while minimizing the
number of functions that must be trusted. This arrangement is necessary to make the Subsystem useful
while remaining low in cost and can result in unusual features as compared with a conventional crypto co-
processor.

End of informative comment.

2.2 Roots of Trust

Start of informative comment:

This section introduces the architectural aspects of a Trusted Platform that enable the collection and
reporting of integrity metrics.

Among other things, a Trusted Platform enables an entity to determine the state of the software
environment in that platform and to SEAL data to a particular software environment in that platform.

The entity deduces whether the state of the computing environment in that platform is acceptable and
performs some transaction with that platform. If that transaction involves sensitive data that must be
stored on the platform, the entity can ensure that that data is held in a confidential format unless the state
of the computing environment in that platform is acceptable to the entity.

To enable this, a Trusted Platform provides information to enable the entity to deduce the software
environment in a Trusted Platform. That information is reliably measured and reported to the entity. At the
same time, a Trusted Platform provides a means to encrypt cryptographic keys and to state the software
environment that must be in place before the keys can be decrypted.

Both these functions require integrity metrics. These metrics consist of data reflecting the integrity of the
software state of the Trusted Platform. Both functions require two roots of trust in a platform. One is
known as the “root of trust for measuring integrity metrics,” and the other is known as the “root of trust for
storing and reporting integrity metrics.”

The root of trust for measuring integrity metrics is likely to be different for different types of platforms
because the metrics and their measurements will depend on the type of platform. The root of trust for
storing and reporting integrity metrics enables integrity metrics to be reliably stored and reported and can
have the same capabilities, irrespective of the type of platform.

A “trusted measurement root” measures certain platform characteristics, logs the measurement data in a
measurement store, and stores the final result in a TPM (which contains the root of trust for storing and
reporting integrity metrics). The trusted measurement root might also measure the characteristics of
another measurement agent before passing control to the second agent. That second agent might repeat
the process of measuring platform characteristics, storing measurement data and the final result, passing
control to a third measurement agent, and so on.

When an integrity challenge is received, the Trusted Platform Agent gathers the following:
» the final results from the TPM,
» the log of the measurement data from the Trusted Platform Measurement Store, and

» TCPA Validation Data that states the values that the measurements should produce in a platform that
is working correctly.

The Trusted Platform Agent then sends this measurement data to the Challenger. The Challenger uses
the data to check that it is consistent with the final results and then compares the data (and perhaps the
final results) with the TCPA Validation Data. This comparison enables the Challenger to deduce the

Version 1.1a 1 December 2001

TCPA Main Specification Page 3

2.2.1 Definitions

Root of Trust for Measurement (RTM)

The point from which all trust in the measurement process is predicated. The RTM contains many
components to provide this level of trust. The design document shows that the RTM includes a core
component, the computing engine to run the core component, physical connections of the core and the
computing engine and other items.

Core Root of Trust for Measurement (CRTM)

The component of the RTM from which the platform begins execution of its trusted state.
Root of Trust for Reporting (RTR)

The point from which all trust in reporting of measured information is predicated.

Root of Trust for Storing (RTS)
The point from which all trust in Protected Storage is predicated.

2.2.2 Instantiations and Trust Bindings

Version 1.1a 1 December 2001

TCPA Main Specification

TPM contents

Asymmetric key generation

Asymmetric encryption co-processor

Computing engine

Hmac

Power detection

Hash RNG

TPM-owner memory

Nonce

Auth handle
Digest
Ephemeral secret

memory

entity-owner memory

Nonce

Auth handle
Digest

Ephemeral secret

PCRs (DWORDSs)

Parent key (2048b)
Child key (2048b)
Scratch pad

PlatformConfigur ationRegister 0 |

PlatformConfigur ationRegister 7 |

A Trusted Platform SHALL include the following:

at least one root of trust for measuring integrity metrics,

Non-volatile memory

Keys

Private endor sement (2048b)
StorageRootK ey (2048b)

M aintenance (2048b)
TPME-identity-key (2048b)

Authorisation (160b)
Owner

Flags
KillMaintenance

DisableOwner Reset
TPM StaticDisable

RNG-state-register (variable)
Data-integrity-register (DWORD)
MAC-secret (variable)

Programs (variable, large)

exactly one root of trust for storing and reporting integrity metrics,

at least one Trusted Platform Measurement Store,

at least one TCPA Validation Data, and

exactly one Trusted Platform Agent.

The Endorsement Key is transitively bound to the Platform via the TPM as follows:

Page 4

1. An Endorsement Key is bound to one and only one TPM (i.e., there is a one to one correspondence
between an Endorsement Key and a TPM.)

2. A TPM is bound to one and only one Platform. (i.e., there is a one to one correspondence between a
TPM and a Platform.)

3. Therefore, an Endorsement Key is bound to a Platform. (i.e., there is a one to one correspondence
between an Endorsement Key and a Platform.)

An instantiation of the root of trust for measuring integrity metrics, while acting as the root of trust for
measuring integrity metrics, SHALL do the following:

execute no programs other than those intended by the entity that vouches for the root of trust for
measuring integrity metrics,

be resistant to the forms of software attack and to the forms of physical attack implied by the
platform’s Protection Profile,

accurately measure at least one integrity metric that indicates the software environment of a platform,

Version 1.1a 1 December 2001

TCPA Main Specification Page 5

e accurately record measured integrity metrics to a root of trust for storing and reporting integrity
metrics, and

* accurately record details of the process of measuring all its integrity metrics to a Trusted Platform
Measurement Store.

An instantiation of the root of trust for storing and reporting integrity metrics SHALL do the following:

* be resistant to all forms of software attack and to the forms of physical attack implied by the platform’s
Protection Profile,

» accept recording of measured integrity metrics, and

» supply an accurate digest of all sequences of presented integrity metrics.

An instantiation of a Trusted Platform Measurement Store SHOULD do the following:

e accurately accept, store and supply details of at least one process of measuring an integrity metric.

An instantiation of the repository for TCPA Validation Data SHOULD do the following:

e accurately store and supply a predicted value of at least one integrity metric.

An instantiation of the Trusted Platform Agent SHOULD do the following:

» obtain and supply an accurate report from the root of trust for storing and reporting integrity metrics of
at least one sequence of integrity metrics in a form that prevents misrepresentation of that sequence
or its source,

* obtain and supply an accurate report from a Trusted Platform Measurement Store of at least one set
of details describing the measurement of an integrity metric, and

* obtain and supply an accurate report from the repository for TCPA Validation Data of at least one
predicted value of an integrity metric

2.3 Integrity Operations

2.3.1 Storage of Integrity Metrics
Start of informative comment:

This section introduces the way that sequences of values of integrity metrics are stored in a TPM. This
section does not describe the way that logs of the measurement process are stored in the Trusted
Platform Measurement Store.

Each entry in the log inside the Trusted Platform Measurement Store contains a description of a
measured entity plus an appropriate integrity metric that has been recorded inside a TPM. The log can be
used to reproduce the value of each sequence of integrity metrics inside the TPM. If the log and the TPM
are consistent and the TPM is trustworthy, the log can be trusted. If the values derived from the log and
the values reported by the TPM are the same, the log is presumed to be an accurate record of the steps
involved in building the software environment of the target platform. Consequently, the descriptions in the
log of the measured entities represent the actual entities that contributed to the software environment
inside the platform. Any difference between the values derived from the log and the values reported by
the TPM indicate an undesirable inconsistency in the state of the target platform.

Version 1.1a 1 December 2001

TCPA Main Specification Page 6

The mechanism used by the TPM to store sequences of values of integrity metrics is the subject of this
section. This method must be reproduced when verifying the consistency of the values derived from the
log and the values reported by the TPM.

A large number of integrity metrics may be measured in a platform, and a particular integrity metric may
change with time and a new value may need to be stored. It is difficult to authenticate the source of
measurement of integrity metrics, and as a result a new value of an integrity metric cannot be permitted to
simply overwrite an existing value. (A rogue could erase an existing value that indicates subversion and
replace it with a benign value.) Thus, if values of integrity metrics are individually stored, and updates of
integrity metrics must be individually stored, it is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The TCPA solution is not to store individual integrity metrics. Instead, a Trusted Platform provides a way
to store sequences of integrity metrics. Values of integrity metrics cannot be “stored” inside a TPM, and
must instead be appended to a sequence. The states of all sequences inside a TPM are set to a known
value at power-up. Each new integrity metric must be appended to a sequence and must modify the value
of that sequence. The actual TCPA method is to concatenate the value of a new integrity metric with the
existing value of the sequence, compute a digest of the concatenation, and use that digest as the new
representation of the sequence.

This method enables one or more sequences to represent an arbitrary number of integrity metrics and
their updates. The fewer the number of sequences, the more difficult it becomes to interpret the meaning
of the value of a sequence. The greater the number of sequences, the more costly it becomes to provide
storage. A particular implementation must make a trade-off between cost and difficulty of interpretation.

End of informative comment.

Integrity metrics that are presented to a TPM SHALL be stored inside that TPM in a way that prevents
misrepresentation of the presented values or of the sequence in which they were presented.

2.3.2 Reporting of Integrity Metrics
Start of informative comment:
This section introduces the way that sequences of integrity metrics are reported by a TPM.

An entity seeking to know the state of the computing environment inside a Trusted Platform depends
critically on the values of the integrity metrics. The integrity metrics enable an entity to determine the
consistency of the measurement information and compare the actual and expected states of the platform.

It follows, then, that the integrity metrics must be reported by a trusted mechanism. That trusted
mechanism is the TPM (which includes the root of trust for storing and reporting integrity metrics). The
TPM proclaims its trustworthiness by signing data, using one of its identities and conventional
cryptographic techniques. The signature key is known only to the TPM and is the private key of a key
pair. The corresponding public key is an identity key, since it is a cryptographic value by which the TPM is
known. Together, the signature key and the identity key are part of an identity of the TPM.

A person or (more probably) an organization vouches for the TPM by attesting to a TPM identity. Before
agreeing to provide attestation, the organization checks the construction credentials of the TPM, the
design credentials of the platform that incorporates the TPM, and the construction credentials of the
platform that incorporates the TPM. When the TPM reports the values of the sequences of integrity
metrics that it has stored, the TPM signs those values using a TPM identity. When an entity receives
signed data that originated in a TPM, the entity can verify that the data has not been changed in transit.
The entity can also check that the data was signed by a TPM identity and that an organization known to
the entity has attested to the TPM identity.

The TPM uses a conventional method to defeat replay attacks. That is, the entity provides a nonce that
the TPM concatenates with the sequence values, before signing the values, and the signed result is
returned by the Trusted Platform Agent to the entity. The actual capability provided by the TPM may be
considered to be an “integrity signature.” The TPM accepts arbitrary data, concatenates that arbitrary
data with the sequence values, and signs the concatenated data using the signature key of a TPM

Version 1.1a 1 December 2001

TCPA Main Specification Page 7

Sequences of integrity metrics reported by the TPM SHALL be reported by that TPM in a way that
prevents misrepresentation of the sequences and prevents misrepresentation of the reporting TPM

2.4 Use of Keys Associated with TPM Identities

It MUST be possible to reliably distinguish between the private key of a TPM identity and other keys.

A key that is distinguished as the private key of a TPM identity SHALL NOT be used to generate a digital
signature value over data that could mimic the output of a TCPA protected capability.

A TPM SHALL NOT use a key that is distinguished as the private key of a TPM identity except during the
part of a TCPA “protected capability” whose specification permits and/or requires the use of a TPM
identity.

When signing on behalf of a TPM identity during the part of a TCPA protected capability whose
specification requires the signature of a TPM identity, a TPM SHALL NOT use a key other than one that
is distinguished as the private key of a TPM identity.

2.5 Cryptographic Operations

Version 1.1a 1 December 2001

TCPA Main Specification Page 8

e Asymmetric encryption/decryption (RSA)
* Symmetric encryption/decryption (3DES)

The Subsystem uses these capabilities to perform generation of random data, generation of asymmetric
and symmetric keys, signing and confidentiality of stored data. The Subsystem also uses confidential
messaging for its own purposes, but does not provide a general-purpose symmetric confidentiality
service. This choice is deliberate, because the fundamental TCPA objective is to improve trust in a
general-purpose computing platform. Hence, TCPA provides only those functions that are necessary to
improve confidence in such a platform so that processing (including conventional security functions) on
the platform can be done with greater confidence.

The TPM contains the minimum set of capabilities that are required to be trusted. The TPM capabilities
must be trustworthy if the Subsystem is to be trusted. Other Subsystem capabilities must (of course)
function properly if the Subsystem is to work as expected.

The TPM contains the following crypto capabilities:

e Hashing (SHA-1)

 Random number generation (RNG)

e Asymmetric key generation (RSA)

* Asymmetric encryption/decryption (RSA)

Note that this list does not include symmetric encryption. This is for reasons of cost.

The hash capability is for use primarily by the TPM, since the TPM requires access to a trusted hash
function. The hash capability is exported by the TPM just to improve hash availability during the boot
phase of a platform, when the “RTM” and other measurement agents probably have restricted access to
the platform’s main processing engine.

The untrusted part of the Subsystem must include symmetric encryption functionality, but does not
include an RNG. The TSS may also include duplicate asymmetric key generation and asymmetric
encryption capabilities depending on the usefulness of TCPA protected capabilities to the TSS.

The Random Number Generator consists of a state-machine that accepts and mixes unpredictable data
and a post-processor that is a one-way function (such as a hash algorithm). This architecture is chosen to
provide a good source of random data without requiring that the TPM include a genuine source of
unpredictable data (which may be expensive).

The state-machine has non-volatile state, is initialized with unpredictable data before delivery to a
customer, and can at any time accept further (unpredictable) data. Such data may be provided by
hardware (from thermal noise, for example), or by software (monitoring keyboard strokes, for example).
Some such unpredictable data must be inserted every time that a platform boots. Naturally, a hardware
source is likely to supply data at a higher baud rate than a software source. That “further data” is mixed
into the existing state of the machine and as a result improves the unpredictability of the state of the
state-machine. Neither the Owner of the TPM nor the manufacturer of the TPM can deduce the state of
the state-machine. The post-processor is used to “condense” the output of the state-machine into data
that has sufficient and uniform entropy. (The one-way function will use more bits of input data than it
produces as output.)

End of informative comment.

2.6 Opting to use a TPM
Start of informative comment:
It is necessary to provide features that activate a TPM. This is for reasons of privacy.

A TPM is necessarily activated by a reset. This, however, causes the TPM to discard any existing secrets,
and puts the TPM into its virgin state, waiting for an Owner. It leaves the TPM vulnerable to ownership by

Version 1.1a 1 December 2001

TCPA Main Specification

End of informative comment.

2.6.1 Enabling Ownership

2.6.2 Activating a TPM

Version 1.1a 1 December 2001

TCPA Main Specification Page 10

It is desirable to provide methods that activate or deactivate a TPM without permanently preventing
access to secrets protected by the TPM. The provision of deactivation methods exposes a denial-of-
service attack, but this is considered a worthwhile price to pay for improved privacy.

One method should certainly be the use of commands authorized by the Owner. This method has the
advantage that it proves possession of sufficient privilege, and can be used either locally or remotely. A
drawback of this method is that the platform must (probably) be fully active in order to communicate an
authorized command to a TPM. The concern is that the TPM may inadvertently be used inbetween the
platform becoming fully active and an authorized “deactivate” command being received by the TPM.
Another disadvantage is that it may be necessary to disable a TPM when the Owner is not available.
Other methods are, therefore, also required. The scope of these methods must reflect any uncertainty
about possession of sufficient privilege.

One method is required to operate before the platform is fully active. In these circumstances, it may be
difficult to check authorization. The method adopted by TCPA is to use software controls that are
remotely inaccessible. These are intended to provide local activation only (not remote activation), but this
depends upon the degree to which the control software is actually inaccessible to remote entities.

Another method is to required to operate when the platform is fully active, but without Owner
authorization. The method adopted by the TCPA is to use an unauthorized command that has a limited
effect — it can be used just to deactivate a TPM, and the effect lasts only until the platform is rebooted.

The method of final resort to activate a TPM is to use a physical (electrical) input to the TPM that cannot
be controlled by software executing on the main platform. This method (obviously) provides local
activation but not remote activation. This method is useful if no one has taken ownership, or the Owner’'s
authorization has been lost, but one or more User authorization data are still known. In the latter case, the
TPM can be activated and Users can use their secrets to recover as much as possible of their data.

This specification uses four methods of activation (while retaining current TPM secrets):

1. A physical (electrical) input to the TPM that cannot be controlled by software executing on the main
platform. Enabling this physical input could involve opening of the platform and throwing a switch, or
activation of a physical lock, for example. Each use of the control causes a transitory activate event at
the TPM. This (obviously) provides local activation but not remote activation.

2. An authenticated command to the TPM from the Owner. This provides either local or remote
activation of the TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
activation and not remote activation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

4. A power-cycle of the platform. This is intended to provide local activation and not remote activation,
but that property depends upon the degree to which a reboot is actually inaccessible to remote
entities.

This specification uses three methods of deactivation (while retaining current TPM secrets):

1. An authenticated command to the TPM from the Owner. These provide either local or remote
deactivation of the TPM.

2. An unauthenticated command to the TPM. These provide either local or remote deactivation of the
TPM.

3. The use of software controls that are remotely inaccessible. These are intended to provide local
deactivation and not remote deactivation, but that property depends upon the degree to which the
controlling software is actually inaccessible to remote entities. (In a PC, these controls could be made
available during the POST, for example.)

End of informative comment.

Version 1.1a 1 December 2001

TCPA Main Specification Page 11

2.6.3 Selected operations

Version 1.1a 1 December 2001

TCPA Main Specification Page 12

Version 1.1a 1 December 2001

TCPA Main Specification Page 13

2.7 Protected, Unprotected, and Connection Operations

No operation outside the TPM SHALL affect the security of the TPM, only the ability of the TPM to
operate. TCPA Operations are classified as:

» Protected Operations Operations affecting the security properties of TCPA. These are
TPM Operations. These begin with TPM_

* Unprotected Operations Operations supporting the protected operations. These are
normally implemented outside the TPM. This begin with TSS_

e Connection Operations Operations affecting the connection of the platform to the TPM.
These are typically defined in the Platform Specific
specifications. These begin with TSC_.

Version 1.1a 1 December 2001

TCPA Main Specification Page 14

3. Protection

3.1 Introduction
Start of informative comment:

The Protection Profile in the Conformance part of the specification defines the threats that are resisted by
a platform. This section, “Protection,” describes the properties of selected capabilities and selected data
locations within a platform that has a Protection Profile and has not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded locations for
data. Every definition of a TCPA capability states whether it is a protected capability. Data definitions
state whether the data must be held in shielded locations.

» A protected capability is one whose correct operation is necessary in order for the operation of the
Subsystem to be trusted.

» A shielded location is an area where data is protected against interference and prying, independent of
its form.

This specification uses the concept of protected capabilities so as to distinguish those Subsystem
capabilities that must be trustworthy. Trust in the Subsystem depends critically on the protected
capabilities. Subsystem capabilities that are not protected capabilities must (of course) work properly if
the Subsystem is to function properly.

This specification uses the concept of shielded locations, rather than the concept of “shielded data.” While
the concept of shielded data is intuitive, it is extraordinarily difficult to define because of the imprecise
meaning of the word “data.” For example, consider data that is produced in a safe location and then
moved into ordinary storage. It is the same data in both locations, but in one it is shielded data and in the
other it is not. Also, data may not always exist in the same form. For example, it may exist as vulnerable
plaintext, but also may sometimes be transformed into a logically protected form. This data continues to
exist, but doesn't always need to be shielded data - the vulnerable form needs to be shielded data, but
the logically protected form does not. If a specific form of data requires protection against interference or
prying, it is therefore necessary to say “if the data-D exists, it must exist only in a shielded location.” A
more concise expression is “the data-D must be extant only in a shielded location.”

Hence if trust in the Subsystem depends critically on access to certain data, that data should be extant
only in a shielded location and accessible only to protected capabilities. When not in use, such data could
be erased after conversion (using a protected capability) into another data structure. Unless the other
data structure was defined as one that must be held in a shielded location, it need not be held in a
shielded location.

End of informative comment.

3.2 Threat

Start of informative comment:

This section, “Threat,” defines the scope of the threats that must be considered when considering
whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform facilitates
subversion of capabilities and data within that platform. It is necessary to define the attacks that must be
resisted by TCPA-shielded locations and TCPA-protected capabilities in that platform.

The TPM Protection Profile defines all attacks that are resisted by the TPM. These attacks must be
considered when determining whether the integrity of TCPA-protected capabilities and data in TCPA-
shielded locations can be damaged. These attacks must be considered when determining whether there
is a backdoor method of obtaining access to TCPA-protected capabilities and data in TCPA-shielded
locations. These attacks must be considered when determining whether TCPA-protected capabilities
have undesirable side effects.

Version 1.1a 1 December 2001

TCPA Main Specification Page 15

For the purposes of the “Protection” section of the specification: the threats that MUST be considered
when determining whether the platform facilitates subversion of TCPA-protected capabilities or data in
TCPA-shielded locations SHALL include the methods inherent in physical attacks that should fail if the
platform complies with its protection profile, and SHALL include all methods that require execution of
instructions in a computing engine in the platform.

3.3 Integrity

A platform SHALL NOT facilitate the alteration of TCPA-protected capabilities or data in TCPA-shielded
locations, except by TCPA-protected capabilities.

3.4 Privileged Access

A platform SHALL NOT facilitate the disclosure or the exposure of data in TCPA-shielded locations,
except to TCPA-protected capabilities.

3.5 Side effects

The implementation of a TCPA-protected capability in a platform SHALL NOT facilitate the disclosure or
the exposure of data in TCPA-shielded locations except by means unavoidably inherent in the TCPA
definition.

Version 1.1a 1 December 2001

TCPA Main Specification Page 16

4. Structures and Defines

4.1.1 Endness of Structures

Each structure MUST use big endian bit ordering, which follows the Internet standard and requires that
the low-order bit appear to the far right of a word, buffer, wire format, or other area and the high-order bit
appear to the far left.

4.1.2 Byte Packing
All structures MUST be packed on a byte boundary.

4.1.3 Lengths

The “Byte” is the unit of length when the length of a parameter is specified.

Version 1.1a 1 December 2001

TCPA Main Specification Page 17

4.2 Defines

Start of informative comment:
The defines are found in tcpa_defines.h.

End of informative comment.

4.2.1 Basic datatypes

Parameters

Typedef Name Description

unsi gned char BYTE Basic byte used to transmit all character fields.

unsi gned char BOCL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00

unsi gned short Ul NT16 16 bit field. The definition in different architectures may
need to specify 16 bits instead of the short definition

unsi gned | ong Ul NT32 32 bit field. The definition in different architectures may
need to specify 32 bits instead of the long definition

4.2.2 Boolean types

Name Value Description
TRUE 0x01 Assertion
FALSE 0x00 Contradiction

4.2.3 Helper redefinitions

The following definitions are to make the IDL definitions more explicit and easier to read.

Parameters

Typedef Name Description

Ul NT32 TCPA_PCRI NDEX Index to a PCR register

Ul NT32 TCPA_DI RI NDEX Index to a DIR register

Ul NT32 TCPA_AUTHHANDLE Handle to an authorization session

Ul NT32 TSS HASHHANDLE Handle to a hash session

Ul NT32 TSS HVACHHANDLE Handle to a HMAC session

Ul NT32 TCPA_ENCHANDLE Handle to a encryption/decryption session

Ul NT32 TCPA_KEY_HANDLE The area where a key is held assigned by the TPM.
Ul NT32 TCPA RESULT The return code from a function

Version 1.1a 1 December 2001

TCPA Main Specification

Page 18

4.2.4 Enumerated Helper redefinitions

Typedef Name Description

Ul NT32 TCPA COMVAND CODE The command ordinal. See 4.33 |

Ul NT16 TCPA PROTOCOL_I D The protocol in use. See 4.@

Ul NT32 TCPA_EVENTTYPE Type of PCR event. See 4p5.2 |

BYTE TCPA _AUTH DATA USAGE Indicates the conditions where it is required that
authorization be presented. See 4.

UNI T16 TCPA _ENTI TY_TYPE Indicates th s of entity that are supported by the
TPM. See 4

UNI T32 TCPA_ALGORI THM I D Indicates the type of algorithm. See 4.18 |

UNI T16 TCPA_KEY_USAGE Indicates the permitted usage of the key. See 4.|L0'_|_|

Ul NT16 TCPA_STARTUP_TYPE Indicates the start state. See 4.16 |

Ul NT32 TCPA_CAPABI LI TY_AREA Identifies a TPM capability area. See 4.@

Ul NT16 TCPA ENC_SCHEME The definition of the encryption scheme. See 8.4 _|

Ul NT16 TCPA_SI G_SCHEME The definition of the signature scheme. See S.E

Ul NT16 TCPA_M GRATE_SCHEME The definition of the migration scheme 4.22 |

Ul NT16 TCPA_PHYSI CAL_PRESENCE Sets the s of the physical presence mechanism. See
section 4.

Ul NT32 TCPA _KEY_FLAGS

Indicates information regarding a key. See 4[IZ]

Version 1.1a 1 December 2001

TCPA Main Specification Page 19

4.2.5 Vendor specific

The following defines allow for the quick specification of a vendor specific item.

Parameters

Name Value

TCPA Vendor _Speci fic32 0x80000000
TCPA Vendor _Speci ficl6 0x8000
TCPA Vendor Speci fic8 0x80

Version 1.1a 1 December 2001

TCPA Main Specification Page 20

4.3 Return codes
Start of informative comment:

The TPM has two types of returns, TCPA_SUCCESS where the TPM reports the results of a successful
function execution and the failure return.

The failure case only returns a non-authenticated fixed set of information. This is due to the fact that the
failure may have been due to authentication or other factors and there is no possibility of producing an
authenticated response.

Failures also terminate any authorization sessions. This is a result of returning only the error code as
there is no way to return and continue the nonce’s necessary to maintain an authorization session.

End of informative comment.

Description

When a command fails for ANY reason, the TPM MUST return only the following three items:
« TPM_TAG_RQU_COMMAND (2 bytes)
» ParamLength(4 bytes, fixed at 10)
* Return Code (4 bytes, never TCPA_SUCCESS)

If a return code is mandated by the action list of a command the TPM MUST return that error code. All
commands MAY return TPM_FAIL, where there is a more descriptive error code the TPM SHOULD use
the more descriptive error code.

The return code MUST be chosen from the following list.

Parameters

Name Value Description

TCPA BASE 0x0 The start of TCPA return codes

TCPA SUCCESS TCPA BASE Successful completion of the operation

TCPA VENDOR_ERROR TCPA BASE + | These error codes are vendor specific for

T]E::Dﬁ\g\z/endor _Spec | vendor specific commands.

TCPA_AUTHFAI L 1I'CPA_BASE +1 Authentication failed

TCPA_BADI NDEX TCPA BASE + 2 The index to a PCR, DIR or other register is
incorrect

TCPA_BAD PARAMETER TCPA BASE + 3 One or more parameter is bad

TCPA_AUDI TFAI LURE TCPA BASE + 4 An operation completed successfully but the
auditing of that operation failed.

TCPA_CLEAR DI SABLED TCPA BASE + 5 The clear disable flag is set and all clear
operations now require physical access

TCPA_DEACTI VATED TCPA BASE + 6 The TPM is deactivated

TCPA_DI SABLED TCPA BASE + 7 The TPM is disabled

TCPA_DI SABLED_CNMD TCPA BASE + 8 The target command has been disabled

TCPA_FAI L TCPA BASE + 9 The operation failed

TCPA_| NACTI VE TCPA BASE + 10 The TPM is inactive

Version 1.1a 1 December 2001

TCPA Main Specification

Page 21

TCPA | NSTALL_DI SABLED | TCPA BASE + 11 The ability to install an owner is disabled

TCPA | NVALI D KEYHANDL | TCPA BASE + 12 The key handle presented was invalid

E

TCPA _KEYNCOTFQOUND TCPA BASE + 13 The target key was not found

TCPA NEED SELFTEST TCPA BASE 14 The capability requires an untested function;
additional self-test is required before the
capability may execute.

TCPA M GRATEFAI L TCPA _BASE + 15 Migration authorization failed

TCPA _NO PCR_| NFO TCPA BASE 16 A list of PCR values was not supplied

TCPA NGOSPACE TCPA BASE + 17 No room to load key.

TCPA _NOSRK TCPA BASE + 18 There is no SRK set

TCPA _NOTSEALED BLOB TCPA BASE 19 An encrypted blob is invalid or was not created
by this TPM

TCPA OMNER SET TCPA BASE + 20 There is already an Owner

TCPA RESOURCES TCPA_BASE + 21 The TPM has insufficient internal resources to
perform the requested action.

TCPA SHORTRANDOM TCPA BASE 22 A random string was too short

TCPA _SI ZE TCPA BASE + 23 The TPM does not have the space to perform
the operation.

TCPA_ WWRONGPCRVAL TCPA BASE + 24 The named PCR value does not match the
current PCR value.

TCPA BUSY TCPA _BASE + 25 The TPM is too busy to respond to the
command

TCPA _SHA THREAD TCPA BASE 26 There is no existing SHA-1 thread.

TCPA_SHA ERROR TCPA BASE 27 The calculation is unable to proceed because
the existing SHA-1 thread has already
encountered an error.

TCPA _FAl LEDSELFTEST TCPA BASE + 28 Self-test has failed and the TPM has shutdown.

TCPA_AUTH2FAI L TCPA_BASE + 29 The authorization for the second key in a 2 key
function failed authorization

TCPA_BADTAG TCPA_BASE + 30 The tag value sent to for a command is invalid

TCPA | OERROR TCPA_BASE + 31 An 10 error occurred transmitting information to
the TPM

TCPA_ENCRYPT_ERROR TCPA _BASE + 32 The encryption process had a problem.

TCPA_DECRYPT_ERROR TCPA_BASE + 33 The decryption process did not complete.

TCPA | NVALI D AUTHHAND | TCPA BASE + 34 The auth handle was invalid

LE

TCPA_NO_ENDORSEMENT TCPA _BASE + 35 The TPM does not a EK installed

TCPA_| NVALI D_KEYUSAGE | TCPA _BASE + 36 The usage of a key is not allowed

TCPA_WRONG_ENTI TYTYPE | TCPA_BASE + 37 The submitted entity type is not allowed

TCPA I NVALI D POSTINIT | TCPA_BASE + 38 The command was received in the wrong

Version 1.1a 1 December 2001

TCPA Main Specification Page 22

sequence relative to TPM_Init and a
subsequent TPM_ Startup

Version 1.1a 1 December 2001

TCPA Main Specification Page 23

4.4 Command Specification Table Description

4.4.1 Introduction, Definition of Terms

* The parameter order column (PARAM) lists the order in which the parameters must be added to the
input or output array and their respective size. If this entry in the column is blank, then that parameter
is not sent to the TPM driver.

e <>in size column means that the size of the element is defined by the appropriate input parameter
(sizelnData controls inData). Where an explicit input ‘size’ parameter exists, it has been moved to
immediately precede the array to which it refers so that there is no confusion.

* When a null terminated string is included in a calculation, the terminating null SHALL NOT be
included in the calculation.

» The following rules concerning byte ordering within a parameter are consistent with Section 4.1 and
follow Internet standards:

1. Elements of a structure are marshaled in the order in which they appear in the document.
2. Byte arrays are marshaled starting with index 0, followed by index 1, and so on.
3. Integer types are marshaled most significant byte first.
4. No padding bytes are to be inserted at any point.
5. Bit ordering within the byte is determined by the 10 channel in use.

» Parameters are marshaled into the input or output arrays according to the following order:
1. Tag specifier

Array length, including tag and length specifier bytes

Command ordinal and/or return code

Key handles

Remaining fixed length parameters

Remaining variable length parameters (with their size parameter)

N o ok~ w DN

If applicable, First authorization setup (authHandle — input only, then nonce, then
continueUse)

8. If applicable, First Authorization digest
9. If applicable, Second authorization setup

10. If applicable, Second authorization digest

4.4.2 HMAC Calculation for Authorization

« All authorized parameters other than the authorization setup parameters (authHandle, nonces and
continueUse) are hashed using SHA-1. This digest, referred to as <paramDigest> throughout this
document, is HMAC'd with the authorization setup parameters to form the authorization digest.

» Where there are two authorization sessions within a single command (changeAuth, etc.) the two
HMACSs are computed using the common <paramDigest> but their respective setup parameters only.

1. AuthDigestl = HMAC(<paramDigest>, EvenNoncel, OddNoncel, continueUsel)
2. AuthDigest2 = HMAC(<paramDigest>, EvenNonce2, OddNonce2, continueUse2)

« The comment after the HMAC authorization digest includes the source of the HMAC key for the
digest. If the authorization session is of type OSAP, then the actual key is the sharedSecret that was

Version 1.1a 1 December 2001

TCPA Main Specification Page 24

derived from the secret listed in the comment. For OIAP sessions, the HMAC key is the listed secret
directly.

* Inthe tables below, the order of computation of the SHA1 hash and HMACs are shown in the HMAC
column. The subscript ‘'S’ refers to parameters that are hashed together using SHA1 to form
<paramDigest>. The subscripts ‘H1’ & ‘H2’ refer to parameters that are HMAC'd to form the first and
second authorization digests.

* Note that as the first element to the HMAC calculation is <paramDigest>, HMAC element numbers
start with 2 in all cases below.

* Inall cases, both input and output, the HMAC calculation uses the following order:
1. <paramDigest>
2. Even nonce (generated by TPM)
3. 0Odd nonce (generated by system)
4

ContinueUse

4.4.3 Parameter List Tag ldentifiers

Tag Name Description

0x00C1 | TPM_TAG RQU COMMAND A command with no authentication.

0x00C2 | TPM_TAG_RQU_AUTH1 COMMAND An authenticated command with one
authentication handle

0x00C3 | TPM_TAG_RQU_AUTH2_ _COMMAND An authenticated command with two
authentication handles

0x00C4 | TPM_TAG_RSP_COMMAND A response from a command with no
authentication

0x00C5 | TPM_TAG_RSP_AUTH1 _COMMAND An authenticated response with one
authentication handle

0x00C6 | TPM_TAG_RSP_AUTH2_COMMAND An authenticated response with two
authentication handles

Version 1.1a 1 December 2001

TCPA Main Specification Page 25

4.5 TCPA_VERSION

Start of informative comment:

The TCPA_VERSION allows the TPM to communicate with outside entities as to the version of the TPM.
This structure is set by the TPM and included in structures that are maintained long term outside of the
TPM.

End of informative comment.
IDL Definition

typedef struct tdTCPA_VERSI ON {
BYTE nmj or;
BYTE m nor;
BYTE revMaj or;
BYTE revM nor;
} TCPA VERSI ON,

Parameters

Type Name Description

BYTE maj or This SHALL be the major version indicator. For version 1 this MUST be 0x01
BYTE m nor This SHALL be the minor version indicator. For version 1 this MUST be 0x01
BYTE revmMej or | This SHALL be the value of the TCPA_PERSISTENT_DATA -> revMajor
BYTE revM nor | This SHALL be the value of the TCPA_PERSISTENT_DATA -> revMinor

Descriptions
The version points to the version of the specification that defines the structure.

If the validity of a structure depends on conformity to a version of the specification and/or to a version of
the TPM, that structure SHALL include the current instance of TCPA_VERSION

Version 1.1a 1 December 2001

TCPA Main Specification Page 26

4.6 TCPA_DIGEST

Start of informative comment:

The digest value reports the result of a hash operation. In Version 1.0 of this specification the hash
algorithm is SHA-1 with a resulting hash result being 160 bits. This lack of flexibility is because the size of
a digest has a dramatic effect on the implementation of a hardware TPM.

End of informative comment.
Definition

typedef struct tdTCPA DI GEST{
BYTE di gest [di gest Si ze] ;
} TCPA DI GEST;

Parameters

Type Name Description

BYTE di gest This SHALL be the actual digest information
Description

The digestSize parameter MUST indicate the block size of the algorithm and MUST be 20 or greater.

For all TCPA v1 hash operations, the hash algorithm MUST be SHA-1 and the digestSize parameter is
therefore equal to 20.

Redefinitions

Typedef Name Description

TCPA DI GEST TCPA_PCRVALUE The value inside of the PCR

TCPA DI GEST TCPA_COVPOSI TE_HASH This SHALL be the hash of a list of PCR indexes
and PCR values that a key or data is bound to (See
or details)

TCPA DI GEST TCPA DI RVALUE This SHALL be the value of a DIR register

TCPA DI GEST TCPA_HVAC

TCPA_DI GEST TCPA_CHOSENI D_HASH This SHALL be the digest of the chosen
identit | and privacyCA for a new TPM identity.
See 10-4-640r details.

Version 1.1a 1 December 2001

TCPA Main Specification Page 27

4.7 TCPA_NONCE

Definition

typedef struct tdTCPA NONCE{
BYTE nonce[20];
} TCPA_NONCE;

Parameters

Type Name Description

BYTE nonce This SHALL be the 20 bytes of random data. When created by the TPM
the value MUST be the next 20 bytes from the RNG.

Version 1.1a 1 December 2001

TCPA Main Specification Page 28

4.8 TCPA_AUTHDATA

Start of informative comment:

The authorization data is the information that is saved or passed to provide proof of ownership of an
entity. For version 1 this area is always 20 bytes.

End of informative comment.
Definition

typedef BYTE tdTCPA_AUTHDATA[20];
Parameters

None.

Descriptions

When sending authorization data to the TPM the TPM does not validate the decryption of the data. It is
the responsibility of the entity owner to validate that the authorization data was properly received by the
TPM. This could be done by immediately attempting to open an authorization session.

The owner of the data can select any value for the data

Redefinitions

Typedef Name Description

TCPA_AUTHDATA | TCPA_SECRET A secret plaintext value used in the authorization process.

TCPA_AUTHDATA | TCPA_ENCAUTH A ciphertext (encrypted) version of authorization data. The
encryption mechanism depends on the context.

Version 1.1a 1 December 2001

TCPA Main Specification Page 29

4.9 TCPA_KEY_HANDLE_LIST

IDL Definition
typedef struct tdTCPA KEY HANDLE LI ST {
Ul NT16 | oaded;

[size_is(loaded)] TCPA_KEY_HANDLE handle[];
} TCPA_KEY_HANDLE LI ST;

Parameters

Type Name Description

UINT16 loaded | The number of keys currently loaded in the TPM.

UINT32 handle | An array of handles, one for each key currently loaded in the TPM
Description

The order in which keys are reported is manufacturer-specific.

Version 1.1a 1 December 2001

TCPA Main Specification Page 30

4.10 TCPA_KEY_USAGE values
Start of informative comment:
This table defines the types of keys that are possible.

Each key has a setting defining the encryption and signature scheme to use. The selection of a key
usage value limits the choices of encryption and signature schemes.

End of informative comment.

Name Value Description

TPM_KEY_SI GNI NG 0x0010 | This SHALL indicate a signing key. The [private] key SHALL be
used for signing operations, only. This means that it MUST be a
leaf of the Protected Storage key hierarchy.

TPM _KEY_STORAGE 0x0011 | This SHALL indicate a storage key. The key SHALL be used to
wrap and unwrap other keys in the Protected Storage hierarchy,
only.

TPM_KEY_I DENTI TY 0x0012 | This SHALL indicate an identity key. The key SHALL be used for
operations that require a TPM identity, only.

TPM_KEY_AUTHCHANGE | 0X0013 | This SHALL indicate an ephemeral key that is in use during the
ChangeAuthAsym process, only.

TPM KEY_BI ND 0x0014 This SHALL indicate a key that can be used for TPM_Bind and
TPM_Unbind operations only.
TPM_KEY_LEGACY 0x0015 | This SHALL indicate a key that can perform signing and binding

operations. The key MAY be used for both signing and binding
operations. The TPM_KEY_LEGACY key type is to allow for use
by applications where both signing and encryption operations
occur with the same key. The use of this key type is deprecated.

Version 1.1a 1 December 2001

TCPA Main Specification Page 31

4.10.1 Mandatory Key Usage Schemes

Start of Informative Comment:

For a given key usage type there are subset of valid encryption and signature schemes.
End of informative comment

The key usage value for a key determines the encryption and / or signature schemes which MUST be
used with that key. The table below maps the schemes defined by this specification to the defined key

usage values. See sections 8[4 gnd

Name

Allowed Encryption schemes

Allowed Signhature Schemes

TPM KEY_SI GNI NG

TCPA_ES_NONE

TCPA_SS_RSASSAPKCS1v15_SHAL
TCPA_SS_RSASSAPCKS1V15 DER

TPM KEY_STORAGE

TCPA_ES_RSAESOAEP_SHAL_MGF1

TCPA_SS_NONE

TPM_KEY_I DENTI TY

TCPA_ES_NONE

TCPA_SS_RSASSAPKCS1v15_SHAL

TPM KEY_AUTHCHANGE

TCPA_ES_RSAESOAEP_SHAL_MGF1

TCPA_SS_NONE

TPM_KEY_BI ND

TCPA_ES_RSAESOAEP_SHA1_MGF1
TCPA_ES_RSAESPKCSV15

TCPA_SS_NONE

TPM_KEY_LEGACY

TCPA_ES_RSAESOAEP_SHAL_MGF1
TCPA_ES_RSAESPKCSV15

TCPA_SS_RSASSAPKCS1v15_SHAL
TCPA_SS_RSASSAPKCS1V15 DER

Where manufacturer specific schemes are used, the strength must be at least that listed in the above

table for TPM_KEY_STORAGE, TPM_KEY_IDENTITY and TPM_KEY_AUTHCHANGE key types.

Version 1.1a 1 December 2001

TCPA Main Specification Page 32

4.11 TCPA_AUTH_DATA_USAGE values

Name Value Description

TPM_AUTH_NEVER 0x00 This SHALL indicate that usage of the key without authorization is
permitted.

TPM _AUTH_ALVWAYS 0x01 This SHALL indicate that on each usage of the key the

authorization MUST be performed.

All other values are reserved for future use.

Version 1.1a 1 December 2001

TCPA Main Specification Page 33

4.12 TCPA_KEY_FLAGS

Start of informative comment:

This table defines the meanings of the bits in a TCPA _KEY_FLAGS structure, used in
TCPA_STORE_ASYMKEY and TCPA_CERTIFY_INFO.

End of informative comment.

TCPA_KEY_FLAGS Val ues

Name Mask Value | Description

redirection 0x00000001 | This mask value SHALL indicate the use of redirected output.

m grat abl e 0x00000002 | This mask value SHALL indicate that the key is migratable.

vol ati | eKey 0x00000004 | This mask value SHALL indicate that the key MUST be unloaded
upon execution of the TPM_Init/TPM_Startup sequence.

The value of TCPA_KEY_FLAGS MUST be decomposed into individual mask values. The presence of a
mask value SHALL have the effect described in the above table

Version 1.1a 1 December 2001

TCPA Main Specification Page 34

4.13 Flags and persistent data structures

Version 1.1a 1 December 2001

TCPA Main Specification

4.13.1 TCPA persistent data

Informative comment

Page 35

Purely for the convenience of listing such data together, this stre contains the minimum set of TCPA
data that are required to be persistent.

End of informative comment.

IDL Definition

[

typedef struct tdTCPA PERSI STENT_DATA{
BYTE revMajor;
BYTE revM nor;

TCPA_NONCE

t pnPr oof ;

TCPA_PUBKEY manuMai nt Pub;

TCPA_KEY

endor senent Key;

TCPA _SECRET owner Aut h;

TCPA_KEY

srk;

TCPA DI RVALUE* dir;

BYTE* rngSt at e;

BYTE or di nal Audi t St at us;
} TCPA_PERSI STENT_DATA;

Type

These data exist in TPM shielded-locations, only, and SHALL be non-volatile. Other TCPA data MAY be
persistent, except when specifically prohibited (by an IsVolatile flag, for example).

Description

Types of Persistent Data

Type Name Description

BYTE revMaj or This is the TPM major revision indicator. This SHALL be
set by the TPME, only. The default value is
manufacturer-specific.

BYTE revM nor This is the TPM minor revision indicator. This SHALL be
set by the TPME, only. The default value is
manufacturer-specific.

TCPA_NONCE t pnPr oof This is a random number that each TPM maintains to

validate blobs in the SEAL and other processes. The
default value is manufacturer-specific.

TCPA_PUBKEY

manuMai nt Pub

This is the manufacturer’s public key to use in the
maintenance operations. The default value is
manufacturer-specific.

TCPA_KEY

endor senent Key

This is the TPM’'s endorsement key pair. See 92. The
default value is manufacturer-specific.

I

TCPA_SECRET owner Aut h This is the TPM-Owner’s authorization data. See 5.11.1.
The default value is manufacturer-specific.

TCPA_KEY srk This is the TPM’'s StorageRootKey. See 5.11.1_The
default value is manufacturer-specific.

TCPA DIRVALUE* |dir These are the DatalntegrityRegisters. MUST be
at least one DIR. See, for example, 6.3 The default

Version 1.1a 1 December 2001

TCPA Main Specification Page 36

value of a DIR is zero.

BYTE* rngSt ate State information describing the random number
generator. The default state and subsequent states are
described in 10.5.

BYTE[] ordi nal Audi t Stat | Table indicating which ordinals are being audited. See
us section 8.12

Version 1.1a 1 December 2001

TCPA Main Specification Page 37

4.13.2 TCPA_PERSISTENT_FLAGS Structure
Start of informative comment:

The persistent flags allow the TPM to maintain internal state across TPM_lInit cycles. These flags include
flags to indicate activation status and physical presence requirements.

The TPM allows two methods for providing proof of physical presence: hardware and command. The
platform manufacturer decides which to provide or allow by setting the values for
physicalPresenceHWEnable and physicalPresenceCMDEnable based in the design of the platform and
customer requirements. Once set, the manufacturer must lock their states by setting the
physicalPresencelL.ifetimeLock.

The logical ORing of the hardware signal with the PhysiallyPresence flags allows the platform
manufacturer to: Allow either method to override the other, Allow one method exclusively, Or disallow
both, preventing the local commands from ever executing.

End of informative comment.

typedef struct tdTCPA _PERSI STENT_FLAGS{
BOOL di sabl e;
BOOL owner shi p;
BOOL deacti vat ed,;
BOOL readPubek;
BOOL di sabl eOwner d ear;
BOOL al | owMai nt enance;
BOOL physi cal Presenceli feti meLock;
BOOL physi cal PresenceHWEnabl e;
BOOL physi cal PresenceCMDEnabl e;
BOOL CEKPUsed;

} TCPA PERSI STENT_FLAGS;

Type

TPM shielded location: These flags exist only in a TPM shielded-location and SHALL be non-volatile.
Other flags MAY be persistent, except when specifically prohibited.

Parameters

Type Name Description

BOOL | disable The state of the disable flag. See @The default state is
TRUE

BOOL | ownership The ability to install an owner. See §.12.5.TThe default state
is TRUE.

BOOL | deacti vated The state of the inactive flag. See 815 The default state is
TRUE.

BOCL r eadPubek The ahiity to read the PUBEK without owner authorization.
See 9.2:2 The default state is TRUE.

BOOL | di sabl eOwner d ear Wheth owner authorized clear commands are active.
See 8.16-6- The default state is FALSE.

BOOL al | owai nt enance Whether the T wner may create a maintenance
archive. See 7.37tThe default state is TRUE.

BOOL physi cal PresencelLi f eti m | This bit can only be set to TRUE; it cannot be set to FALSE

eLock except during the manufacturing process.

FALSE: The state of either physicalPresenceHWEnable or

Version 1.1a 1 December 2001

TCPA Main Specification Page 38

physicalPresenceCMDEnable MAY be changed.
(DEFAULT)

TRUE: The state of either physicalPresenceHWEnable or
physicalPresenceCMDEnable MUST NOT be changed for
the life of the TPM.

BOOL | physi cal PresenceHVEnabl FALSE: Disable the hardware signal indicating physical

e presence. (DEFAULT)
TRUE: Enables the hardware signal indicating physical
presence.
BOCL | physi cal PresenceCVDEnab | FALSE: Disable the command indicating physical presence.
Il e (DEFAULT)
TRUE: Enables the command indicating physical presence.
BOOL | CEKPUsed TRUE: The PRIVEK and PUBEK were created using

TPM_CreateEndorsementKeyPair.

FALSE: The PRIVEK and PUBEK were created using a
manufacturers process.

NOTE: This flag has no default value as the key pair MUST
be created by one or the other mechanism.

Description

The data structure TCPA_PERSISTENT_FLAGS SHALL exist in a TPM shielded-location, only, and
SHALL be non-volatile.

The physicalPresenceHWEnable and physicalPresenceCMDEnable flags MUST mask their respective
signals before further processing. The hardware signal, if enabled by the physicalPresenceHWEnable
flag, MUST be logically ORed with the PhysicalPresence flag, if enabled, to obtain the final physical
presence value used to allow or disallow local commands.

Actions
1. Disable flag

a. If disable has the value of TRUE the following commands will execute with their normal
protections

i. TPM_Reset

i. TPM_Init

iii. TPM_Startup

iv. TPM_SaveState

v. TPM_SHA1Start

vi. TPM_SHAlUpdate
vii. TPM_SHAl1Complete
viii. TPM_SHAl1CompleteExtend
ix. TSC_PhysicalPresence
x. TPM_OIAP

xi. TPM_OSAP

Version 1.1a 1 December 2001

TCPA Main Specification Page 39

xii. TPM_GetCapability
xiii. TPM_Extend

xiv. TPM_OwnerSetDisable
xv. TPM_PhysicalEnable

xvi. TPM_ContinueSelfTest

xvii. TPM_SelfTestFull

xviii. TPM_GetTestResult

b. All other commands SHALL return TCPA_DISABLED.
2. Ownership flag

a. If ownership has the value of FALSE, then any attempt to install an owner fails with the error
value TCPA INSTALL DISABLED.

3. Deactivated flag
a. This flag sets the state of TCPA_VOLATILE_FLAGS -> deactivated upon initialization.
4. readPubek

a. If readPubek is TRUE then the TPM_ReadPubek will return the PUBEK, if FALSE the
command will return TCPA_DISABLED_CMD.

5. DisableOwnerClear

a. If disableOwnerClear is TRUE then the clear commands requiring owner authorization will
return TCPA_CLEAR_DISABLED, if false the commands will execute.

Version 1.1a 1 December 2001

TCPA Main Specification Page 40

4.13.3TCPA_VOLATILE_FLAGS Structure
Start of informative comment:

Despite its name, the data structure TCPA_VOLATILE_FLAGS may be stored in non-volatile media. To
do so may or may not be advantageous, depending on circumstances. If TCPA VOLATILE_FLAGS is
held in non-volatile storage, the operation of TPM_SaveState is simplified.

TPM_Extend is not permitted to operate when a TPM is deactivated. This is because a deactivated TPM
performs no useful service until a platform is rebooted, at which point the PCRs are reset.

TPM_GetCapability and TPM_CreateEndorsementKey may be called before TPM_Startup. This is
necessary because TPM_Startup will fail unless an endorsement key exists.

Updating auditDigest is unnecessary when a TPM is deactivated. This is because a deactivated TPM
performs no useful service until a platform is rebooted, at which point the auditDigest is reset.

End of informative comment.

IDL Definition

typedef struct tdTCPA VOLATILE FLAGS{
BOOL deacti vat ed;
BOOL di sabl eFor ceCd ear;
BOOL physi cal Presence;
BOOL physi cal Presencelock;
BOOL postlnitialise;
} TCPA VOLATI LE_FLAGS;

Type
TPM shielded location

Parameters

Type Name Description

BOOL deacti vat ed Prevents the operation of most capabilities. There is no
default state. It is initialized by TPM_Startup to the same
value as TCPA PERSISTENT_FLAGS -> deactivated.
TPM_SetTempDeactivated sets it to TRUE.

BOOL di sabl eForced ear Prevents the operation of TPM_ForceClear when TRUE.
The default state is FALSE. TPM_DisableForceClear sets it
to TRUE.

BOOL physi cal Presence Indicates that a User is physically present when TRUE. The
default state is FALSE (User is not physically present)

BOOL physi cal PresenceLock | Indicates whether changes to the physicalPresence flag are
permitted. TPM_Startup/ST_CLEAR sets PhysicalPresence
to its default state of FALSE (allow changes to
PhysicalPresence flag). The meaning of TRUE is: Do not
allow further changes to PhysicalPresence flag.
TSC_PhysicalPresence can change the state of
physicalPresenceLock.

BOCL postinitialise Prevents the operation of most capabilities. There is no
default state. It is initialized by TPM Init to TRUE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 41

TPM_Startup sets it to FALSE.

Description
The data structure TCPA_VOLATILE_FLAGS SHALL exist only in a TPM shielded-location.
The data structure TCPA_VOLATILE_FLAGS MAY be held in non-volatile storage.
Actions
1. Deactivated flag
a. If deactivated is TRUE the following commands SHALL execute with their normal protections
i. TPM_Reset
i. TPM_Init
iii. TPM_Startup
iv. TPM_SaveState
v. TPM_SHA1Start
vi. TPM_SHA1Update
vii. TPM_SHA1Complete
viii. TPM_SHAl1CompleteExtend
ix. TSC_PhysicalPresence
x. TPM_OIAP
xi. TPM_OSAP
xii. TPM_GetCapability
xiii. TPM_TakeOwnership
xiv. TPM_OwnerSetDisable
xv. TPM_PhysicalDisable
xvi. TPM_PhysicalEnable
xvii. TPM_PhysicalSetDeactivated
xviii. TPM_ContinueSelfTest
xix. TPM_SelfTestFull
xx. TPM_GetTestResult
b. All other commands SHALL return TCPA_DEACTIVATED.
2. DisableForceClear

If disableForceClear is TRUE then the TPM_ForceClear command returns
TCPA_CLEAR_DISABLED, if FALSE then the command will execute.

3. PhysicalPresence

If physicalPresence is TRUE and TCPA_PERSISTENT_FLAGS -> physicalPresenceCMDEnable
is TRUE, the TPM MAY assume that the Owner is physically present. If physicalPresence is
FALSE, the TPM MUST assume that the Owner is physically absent. Note that this
physicalPresence is exclusive of the unambiguous physical presence indication required for
TPM_PhysicalEnable. They MAY be the same hardware signal depending on the design of the
platform and TPM.

Version 1.1a 1 December 2001

TCPA Main Specification Page 42

4. physicalPresencelLock

If physicalPresenceLock is TRUE, TSC_PhysicalPresence MUST NOT change the
physicalPresence flag. If physicalPresencelock is FALSE, TSC_PhysicalPresence will operate.

5. postinitialise

a. If postlnitialise is TRUE the following commands SHALL execute with their normal
protections:

i. TPM_Startup
ii. TPM_CreateEndorsementKey
iii. TPM_GetCapability
iv. TPM_ContinueSelfTest
v. TPM_SelfTestFull
vi. TPM_GetTestResult

b. All other commands SHALL set the flag TCPA_VOLATILE_FLAGS -> postlnitialise to FALSE,
set TCPA_VOLATILE_FLAGS -> deactivated to TRUE, and return
TCPA_INVALID_POSTINIT

Version 1.1a 1 December 2001

TCPA Main Specification

4.14 TCPA_PAYLOAD_TYPE

Start of informative comment:

This structure specifies the type of payload in various messages.

End of informative comment.

Definition

t ypedef unsi gned char TCPA PAYLQOAD TYPE;

TCPA_PAYLOAD_TYPE Values

Page 43

Value Name Comments

0x01 TCPA_PT_ASYM The entity is an asymmetric key
0x02 TCPA _PT_BIND The entity is bound data

0x03 TCPA_PT_MIGRATE The entity is a migration blob
0x04 TCPA _PT_MAINT The entity is a maintenance blob
0x05 TCPA PT_SEAL The entity is sealed data

0x06 — Ox7F Reserved for future use by TCPA
0x80 — OxFF Vendor specific payloads

Version 1.1a 1 December 2001

TCPA Main Specification

4.15 TCPA_ENTITY_TYPE

Start of informative comment:

This specifies the types of entity that are supported by the TPM.

End of informative comment.

TCPA_ENTITY_TYPE Values

Page 44

Value Event Name Comments

0x0001 TCPA_ET_KEYHANDLE | The entity is a keyHandle
0x0002 TCPA _ET_OWNER The entity is the TPM Owner
0x0003 TCPA _ET_DATA The entity is some data
0x0004 TCPA_ET_SRK The entity is the SRK
0x0005 TCPA_ET_KEY The entity is a key
Description

For the entity type of TCPA_ET_OWNER the associated key handle MUST be 0x40000001
For the entity type of TCPA_ET_SRK the associated key handle MUST be 0x40000000

Version 1.1a 1 December 2001

TCPA Main Specification Page 45

4.16 TCPA_STARTUP_TYPE

TCPA_STARTUP_TYPE Values

Value Event Name Comments

0x0001 TCPA_ST _CLEAR The TPM is starting up from a clean state

0x0002 TCPA_ST_STATE The TPM is starting up from a saved state

0x0003 TCPA_ST _DEACTIVATED | The TPM is to startup and set the deactivated flag to
TRUE

Version 1.1a 1 December 2001

TCPA Main Specification Page 46

4.17 TCPA_PROTOCOL_ID
Start of informative comment:

This value identifies the protocol in use.
End of informative comment.

Definition

typedef Ul NT16 TCPA PROTOCOL | D

TCPA_PROTOCOL_ID Values

Value Event Name Comments

0x0001 TCPA _PID_OIAP The OIAP protocol. See S.E

0x0002 TCPA_PID_OSAP The OSAP protocol. See 5|2.4 |

0x0003 TCPA_PID_ADIP The ADIP protocol. See S.D

0X0004 TCPA_PID_ADCP The ADCP protocol. See 56]

0X0005 TCPA_PID_OWNER | The protocol for taking ownership of a TPM. See 5.11 |

Version 1.1a 1 December 2001

TCPA Main Specification

4.18 TCPA_ALGORITHM_ID

Start of informative comment:

This table defines the types of algorithms which may be supported by the TPM.

End of informative comment.

Definition

TCPA_ALGORITHM_ID values

Page 47

Name Value Description

TCPA_ALG_RSA 0x00000001 The RSA algorithm.
TCPA_ALG_DES 0x00000002 The DES algorithm
TCPA_ALG_3DES 0X00000003 The 3DES algorithm
TCPA_ALG_SHA 0x00000004 The SHA1 algorithm
TCPA_ALG_HMAC 0x00000005 The RFC 2104 HMAC algorithm
TCPA_ALG_AES 0x00000006 The AES algorithm

The TPM MUST support the algorithms TCPA_ALG_RSA, TCPA_ALG_SHA, TCPA_ALG_HMAC.

Version 1.1a 1 December 2001

TCPA Main Specification Page 48

4.19 TCPA_PHYSICAL_PRESENCE

Name Value Description

TCPA _PHYSI CAL_PRESENCE LI FETI ME_L 0x0080h Sets the physicalPresencelLifetimeLock

oCK to TRUE

TCPA _PHYSI CAL_PRESENCE_HW ENABLE 0x0040h Sets the physicalPresenceHWEnable to
TRUE

TCPA_PHYSI CAL_PRESENCE_CMD_ENABLE 0x0020h Sets the physicalPresenceCMDEnable
to TRUE

TCPA_PHYSI CAL_PRESENCE_NOTPRESENT 0x0010h Sets PhysicalPresence = FALSE

TCPA_PHYSI CAL_PRESENCE_PRESENT 0x0008h Sets PhysicalPresence = TRUE

TCPA PHYSI CAL_PRESENCE LOCK 0x0004h Sets PhysicalPresencelLock = TRUE

Version 1.1a 1 December 2001

TCPA Main Specification Page 49

4.20 TCPA_KEY_PARMS

Start of informative comment:

This provides a standard mechanism to define the parameters used to generate a key pair, and to store
the parts of a key shared between the public and private key parts.

End of informative comment.
Definition

typedef struct tdTCPA_KEY_PARMS {
TCPA_ALGORI THM I D al gorithm D
TCPA _ENC _SCHEME encSchene;
TCPA_SI G_SCHEME si gScherne;
Ul NT32 parnSi ze;
[size_is(parntize)] BYTE* parnmns;
} TCPA_KEY_PARMS;

Parameters

Type Name Description

TCPA_ALGORITHM_ID |algorithm D This SHALL be the key algorithm in use

UINT32 parnfSi ze This SHALL be the size of the parms field in bytes

TCPA_ENC_SCHEME encSchene This SHALL be the encryption sche at the key uses
to encrypt information see section 8.

TCPA_SIG_SCHEME si gSchemne This SHALL be the signature scheme that ah.iTey uses
to perform digital signatures see section 8.

BYTE[] par s This SHALL be the parameter information dependant
upon the key algorithm.

Descriptions

The contents of the ‘parms’ field will vary depending upon algorithmld:

Algorithm Id PARMS Contents

TCPA_ALG_RSA A structure of type TCPA_RSA_KEY_PARMS

TCPA_ALG_DES No content

TCPA_ALG_3DES No content — Need description of key size (3 full keys etc) and mode EDE etc.
TCPA_ALG_SHA No content

TCPA_ALG_HMAC No content

TCPA_ALG_AES No content — Need description of key size (128, 192, 256)

4.20.1 TCPA_RSA_KEY_PARMS
Start of informative comment:
This structure describes the parameters of an RSA key.

End of informative comment.

Version 1.1a 1 December 2001

TCPA Main Specification Page 50
Definition
typedef struct tdTCPA RSA KEY_PARMS {
U NT32 keyLengt h;
U NT32 nunPrinmes;
U NT32 exponent Si ze;
BYTE[] exponent;
} TCPA_RSA_KEY_PARMS;
Parameters
Type Name Description
UINT32 keyLength This specifies the size of the RSA key in bits
UINT32 numPrimes This specifies the number of prime factors used by this RSA key.
UINT32 exponentSize This SHALL be the-size of the exponent. If the key is using the
exponent from 10-4-Lithen the exponentSize MUST be 0.
BYTE[] exponent The public exponent of this key

Version 1.1a 1 December 2001

TCPA Main Specification Page 51

4.21 TCPA_CHANGEAUTH_VALIDATE

Start of informative comment:

This structure provides an area that will stores the new authorization data and the challenger’s nonce.
End of informative comment.

Definition

typedef struct tdTCPA CHANGEAUTH VALI DATE {
TCPA SECRET newAut hSecr et ;
TCPA_NONCE n1;

} TCPA_CHANGEAUTH_VALI DATE;

Parameters

Type Name Description

TCPA_SECRET newAut hSecr et This SHALL be the new authorization data for the target entity

TCPA_NONCE nl This SHOULD be a nonce, to enable the caller to verify that the target
TPM is on-line.

Version 1.1a 1 December 2001

TCPA Main Specification Page 52

4.22 TCPA_MIGRATE_SCHEME

Start of informative comment:

The scheme indicates how the StartMigrate command should handle the migration of the encrypted blob.
End of informative comment.

Definition

TCPA_MIGRATE_SCHEME values

Name Value Description

TCPA_MS_MIGRATE | 0x0001 | A public key that can be used with all TCPA migration commands
other than ‘ReWrap’ mode.

TCPA_MS_REWRAP | 0x0002 | A public key that can be used for the ReWrap mode of
TPM_CreateMigrationBlob.

TCPA_MS_MAINT 0x0003 A public key that can be used for the Maintenance commands

Version 1.1a 1 December 2001

TCPA Main Specification Page 53

4.23 TCPA_MIGRATIONKEYAUTH

Start of informative comment:

This structure provides the proof that the associated public key has TPM Owner authorization to be a
migration key.

End of informative comment.
Definition

typedef struct tdTCPA M GRATI ONKEYAUTH{
TCPA_PUBKEY ni gr at i onKey;
TCPA M GRATE_SCHEME ni gr ati onSchene;
TCPA DI GEST di gest ;

} TCPA_ M GRATI ONKEYAUTH;

Parameters
Type Name Description
TCPA_PUBKEY | migrati onKey This SHALL be the public key of the migration facility

TCPA_MIGRAT | migrationScheme | This shall be the type of migration operation.
E_SCHEME

TCPA _DIGEST | di gest This SHALL be the digest value of the concatenation of
migration key, migration scheme and tpmProof

Version 1.1a 1 December 2001

TCPA Main Specification Page 54

4.24 TCPA_AUDIT_EVENT structure

IDL Definition

typedef struct tdTCPA_AUDI T_EVENT{
TCPA COMVAND CODE ordi nal ;
TCPA RESULT r et urncode;

} TCPA_AUDI T_EVENT;

Parameters

Type Name Description
TCPA_COMMAND_CODE | ordi nal Ordinal of the command
TCPA_RESULT r et ur ncode Return code for the command

Version 1.1a 1 December 2001

TCPA Main Specification Page 55

4.25 PCR Structures

Version 1.1a 1 December 2001

TCPA Main Specification Page 56

4.25.1 TCPA_EVENT_CERT

Start of informative comment:

Certificate structure to use when adding EV_CODE_CERT events to the log.

End of informative comment.

Definition

typedef struct tdTCPA EVENT_CERT {
TCPA DI GEST certificateHash;
TCPA DI GEST entityDigest;
BOOL di gest Checked;
BOOL di gest Verifi ed;
U NT32 issuerSi ze;

[size_is (IssuerSize)] BYTE * issuer;
) TCPA_EVENT_CERT;

Parameters

Type Name Description

TCPA_DIGEST certificateHash Hash of the entire VE certificate

TCPA_DIGEST entityDigest Actual digest value of the entity

BOOL digestChecked TRUE if the entity logging this event checked the
measured value against the digest value in the certificate.
FALSE if no checking was attempted.

BOOL digestVerified Only valid when DigestChecked is TRUE.
TRUE if measured value matches digest value in
certificate, FALSE otherwise.

UINT32 issuerSize Size of the Issuer parameter

BYTE* issuer Actual issuer certificate

Version 1.1a 1 December 2001

TCPA Main Specification Page 57

4.25.2 TCPA_PCR_EVENT

Start of informative comment:

Individual events are stored in the TCPA_PCR_EVENT variably sized data structure.
TCPA defines the following event/supporting information types:

EventType Values

Value | Event Name Comments

0 EV_CODE_CERT The TPM_Extend event is in response to loading a firmware or
software component for which a VE certificate was available. *Event
points to the VE certificate that shipped with the platform firmware or
software (or discovered by other means). Size indicates the length of
this structure. ExtendValue is the digest of the firmware, software or
other code loaded. Certificates are much too large to put into the log in
the Pre-OS environment. Validation of Certificates is unlikely in the
Pre-OS environment. The event MUST point to a
TCPA_EVENT_CERT structure.

1 EV_CODE_NOCERT [The event was in response to loading a firmware or other software
component, but no VE certificate was found. The size is 0 and *Event
is unused. However, ExtendValue is the digest of the firmware
discovered. Absence of a VE certificate does not indicate lack of trust;
it merely indicates that a VE certificate was not available at this point
in boot. Upper-level software may be able to obtain such certificates.

2 EV_XML_CONFIG The event describes the platform configuration. The supporting
information is a platform or firmware-defined XML data structure that
indicates security-relevant hardware configuration information. The
event logged to TPM_Extend is the SHA-1 digest of the XML data
structure, and the firmware guarantees that the configuration stated in
the data structure is in effect when the firmware relinquishes control to
the next module in boot. Size is the size in bytes of the XML data
structure, and *Event points to the data structure itself. The information
may include size of physical memory, number of processors, chipset
configuration, buses discovered and processor/bus frequencies.
Firmware vendors are free to define the XML reporting structure and
select those parameters that are important for their platforms.

3 EV_NO_ACTION The action was not performed. The corresponding DIGEST structure
MUST be 0x1 (a single binary digit in the LSB of the DIGEST
structure), and this value MUST also be logged to the TPM using the
corresponding TPM_Extend operation. A supporting data structure
may be supplied containing information that describes why the event
did not occur. If such supporting information is supplied, it should be
well-formed XML. However, this supporting information is not required.

4 EV_SEPARATOR A list of actions was complete. This event must be used if more than
one event can be logged to the TPM and upper-level software needs
to be informed that logging was completed.

5 EV_ACTION A logged event. This is a Unicode string with the content defined by
the Platform Specific specifications.
6 EV_PLATFORM_SP | Implementation specification defined data.
ECIFIC

Version 1.1a 1 December 2001

TCPA Main Specification Page 58

Version 1.1a 1 December 2001

TCPA Main Specification Page 59

4.25.3TCPA_PCR_SELECTION
Start of informative comment:
This structure provides a standard method of specifying a list of PCR registers.

End of informative comment.

Definition

typedef struct tdTCPA _PCR _SELECTI ON {
U NT16 sizeOf Sel ect ;
[size_is(sizeOSelect)] BYTE pcrSelect[];
} TCPA_PCR_SELECTI ON;

Parameters

Type Name Description

UINT16 si zeOf Sel ect The size in bytes of the pcrSelect structure

BYTE pcr Sel ect Thi_s SHALL be a bit map that indicates if a PCR is
active or not

Description

When the least-significant-bit of byte [N+1] of pcrSelect is butted against the most-significant-bit of byte
[N] of pcrSelect for (15>=N>=0), the contiguous bit array so formed SHALL represent PCR indices in
monotonically increasing order, starting from PCR index zero represented by bit O of byte 0 of pcrSelect.

The state of each bit in pcrSelect indicates whether a PCR register is selected or not. When the bit is 1
then the corresponding PCR is selected, if 0 the PCR is not selected.

The TPM MUST support a minimum sizeOfSelect of 2, larger sizes are allowable. The TPM MAY support
TCPA_PCR_SELECTION structures with a larger size.

Version 1.1a 1 December 2001

TCPA Main Specification Page 60

4.25.4TCPA_PCR_COMPOSITE
Start of informative comment:

The composite structure provides the index and value of the PCR register to be used when creating the
value that SEALS an entity to the composite.

End of informative comment.

Definition

typedef struct tdTCPA PCR COWPGCSI TE {
TCPA PCR_SELECTI ON sel ect;
U NT32 val ueSi ze;
[size_is(valueSize)] TCPA PCRVALUE pcrVal ue[];
} TCPA_PCR_COMPCSI TE;

Parameters

Type Name Description

TCPA_PCR_SELECTION | sel ect This SHALL be the indication of which PCR values are
active

UINT32 val ueSi ze This SHALL be the size of the pcrValue field

TCPA_PCRVALUE pcrVal ue[] | This SHALL be an array of TCPA_PCRVALUE structures.
The values come in the order specified by the select
parameter and are concatenated into a single blob

Version 1.1a 1 December 2001

TCPA Main Specification Page 61

4.25.5TCPA_PCR_INFO
Start of informative comment:

The TCPA_PCR_INFO structure contains the information related to the wrapping of a key or the sealing
of data, to a set of PCRs.

End of informative comment.
Definition

typedef struct tdTCPA _PCR | NFQY
TCPA _PCR_SELECTI ON pcr Sel ect i on;
TCPA_COMPOSI TE_HASH di gest At Rel ease;
TCPA COVPCSI TE_HASH di gest At Creat i on;
} TCPA PCR_| NFO

Parameters
Type Name Description
TCPA PCR_SELECTI ON pcr Sel ection This SHALL be the selection of PCRs to which the

data or key is bound.

TCPA_COVPOSI TE_HASH | di gest At Rel ease This SHALL be the digest of the PCR indices and
PCR values to verify when revealing Sealed Data
or using a key that was wrapped to PCRs.

TCPA_COWPOS| TE_HASH | di gest At Creati on | This SHALL be the composite digest value of the
PCR values, at the time when the sealing is
performed.

Version 1.1a 1 December 2001

TCPA Main Specification Page 62

4.26 Storage Structures

4.26.1 TCPA_STORED_DATA
Start of informative comment:
The definition of this structure is necessary to ensure the enforcement of security properties.

This structure is in use by the TPM_Seal and TPM_Unseal commands to identify the PCR index and
values that must be present to properly unseal the data.

End of informative comment.
Definition

typedef struct tdTCPA _STORED DATA {
TCPA_VERSI ON ver;
U NT32 seal I nf 0Si ze;
[size_is(seallnfoSize)] BYTE* seallnfo;
U NT32 encDat aSi ze;
[size_is(encDataSi ze)] BYTE* encDat a;
} TCPA_STORED DATA;

Parameters

Type Name Description

TCPA_VERSI ON ver Version number defined in section 4|5

UINT32 seal I nf oSi ze Size of the seallnfo parameter

BYTE* seal I nfo This SHALL be a structure of type
TCPA_PCR_INFO or a 0 length array if the
data is not bound to PCRs.

UINT32 encDat aSi ze This SHALL be the size of the encData
parameter

BYTE* encDat a This shall be an encrypted
TCPA_SEALED_DATA structure containing
the confidential part of the data.

Descriptions

This structure is created during the TPM_Seal process. The confidential data is encrypted using a non-
migratable key. When the TPM_Unseal decrypts this structure the TPM_Unseal uses the public
information in the structure to validate the current configuration and release the decrypted data.

Version 1.1a 1 December 2001

TCPA Main Specification Page 63

4.26.2 TCPA_SEALED_DATA

Start of informative comment:

This structure contains confidential information related to sealed data, including the data itself.
End of informative comment.

Definition

typedef struct tdTCPA _SEALED DATA {
TCPA _PAYLOAD TYPE payl oad;
TCPA SECRET aut hDat a;
TCPA _NONCE t pnPr oof ;
TCPA_DI GEST st oredDi gest;
U NT32 dat aSi ze;
[size_is(dataSize)] BYTE* dat a;
} TCPA SEALED DATA;

Parameters

Type Name Description

TCPA_PAYLOAD_TYPE | payl oad This SHALL indicate the payload type of
TCPA_PT_SEAL

TCPA_SECRET aut hDat a This SHALL be the authorization data for this value

TCPA_NONCE t pnPr oof This SHALL be a copy of
TPM_PERSISTENT_FLAGS -> tpmProof

TCPA_DIGEST st or edDi gest This SHALL be a digest of the
TCPA_STORED_DATA structure, excluding the fields
TCPA STORED _DATA -> encDataSize and
TCPA_STORED_DATA -> encData.

UINT32 dat aSi ze This SHALL be the size of the data parameter

BYTE* dat a This SHALL be the data to be sealed

Description

To tie the TCPA_STORED_DATA structure to the TCPA_SEALED_DATA structure this structure
contains a digest of the containing TCPA_STORED_DATA structure.

The digest calculation does not include the encDataSize and encData parameters.

Version 1.1a 1 December 2001

TCPA Main Specification Page 64

4.26.3TCPA_SYMMETRIC_KEY
Start of informative comment:

This structure describes a symmetric key, used during the process OEpollating a Request for a Trusted
Platform Module Identity”.

End of informative comment.
Definition

typedef struct tdTCPA _SYMMETRI C KEY {
TCPA_ALGORI THM I D al gl d;
TCPA _ENC _SCHEME encSchene;
Ul NT16 si ze;
[size_is(size)] BYTE* data;

} TCPA_SYMVETRI C_KEY;

Parameters

Type Name Description

TCPA_ALGORITHM_ID algld This SHALL be the algorithm identifier of the symmetric
key.

TCPA_ENC_SCHEME encScheme This SHALL fully identify the manner in which the key
will be used for encryption operations.

UINT16 si ze This SHALL be the size of the data parameter in bytes

BYTE* dat a This SHALL be the symmetric key data

Version 1.1a 1 December 2001

TCPA Main Specification

4.26.4 TCPA_BOUND_DATA

Page 65

Definition

typedef struct tdTCPA BOUND DATA {
TCPA_VERSI ON ver;
TCPA_PAYLOAD TYPE payl oad;
BYTE[] payl oadDat a;
} TCPA_BOUND_DATA;

Parameters

Type Name Description

TCPA_VERSI ON ver Version number defined in section 4[5._]
TCPA_PAYLQAD TYPE payl oad This SHALL be the value TCPA_PT_BIND
BYTE[] payl oadDat a The bound data

Descriptions

This structure MUST be used for creating data when (wrapping with a key of type TPM_KEY_BIND) or
(wrapping using the encryption algorithm TCPA_ES_RSAESOAEP_SHA1_M). If it is not, the

TPM_UnBind command will fail.

Version 1.1a 1 December 2001

TCPA Main Specification Page 66

4.27 TCPA_KEY complex

Version 1.1a 1 December 2001

TCPA Main Specification Page 67

4.27.1 TCPA_KEY
Start of informative comment:

The TCPA_KEY structure provides a mechanism to transport the entire asymmetric key pair. The private
portion of the key is always encrypted.

The reason for using a size and pointer for the PCR info structure is save space when the key is not
bound to a PCR. The only time the information for the PCR is kept with the key is when the key needs
PCR info.

End of informative comment.:
Definition

typedef struct tdTCPA_KEY{
TCPA_VERSI ON ver;
TCPA_KEY_USAGE keyUsage;
TCPA_KEY_FLAGS keyFl ags;
TCPA_AUTH_DATA USAGE aut hDat aUsage;
TCPA_KEY_PARMS al gori t hnPar rs;
U NT32 PCRI nfoSi ze;
BYTE* PCRI nf o;
TCPA_STORE_PUBKEY pubkKey;
U NT32 encSi ze;
[size_is(encData)] BYTE* encDat a;

} TCPA KEY;
Parameters
Type Name Description
TCPA_VERSI ON ver Version number defined in section
TCPA _KEY_USAGE keyUsage This SHALL be the TCPA Kkey usage that
determines the operations permitted with this key
TCPA _KEY_FLAGS keyFl ags This SHALL be the indication of migration,

redirection etc.

TCPA_AUTH DATA USAGE | aut hDat aUsage This SHALL Indicate the conditions where it is
required that authorization be presented.

TCPA_KEY_PARMS al gorithmParns | This SHALL be the information regarding the
algorithm for this key

Ul NT32 PCRI nf 0Si ze This SHALL be the length of the pcrinfo parameter.
If the key is not bound to a PCR this value SHOULD
be 0.

BYTE* PCRI nf o This SHALL be a structure of type

TCPA_PCR_INFO, or an empty array if the key is
not bound to PCRs.

TCPA _STORE_PUBKEY pubKey This SHALL be the public portion of the key
Ul NT32 encSi ze This SHALL be the size of the encData parameter.
BYTE* encDat a This SHALL be an encrypted

TCPA_STORE_ASYMKEY structure
TCPA_MIGRATE_ASYMKEY structure

Version 1.1a 1 December 2001

TCPA Main Specification Page 68

4.27.2 TCPA_STORE_PUBKEY
Start of informative comment:

This structure can be used in conjunction with a corresponding TCPA_KEY_PARMS to construct a public
key which can be unambiguously used.

End of informative comment.

typedef struct tdTCPA_STORE_PUBKEY ({
U NT32 keyLengt h;
BYTE[] key;

} TCPA_STORE_PUBKEY;

Parameters

Type Name Description

Ul NT32 keyLength This SHALL be the length of the key field.

BYTH[] key This SHALL be a structure interpreted according to the algorithm Id in
the corresponding TCPA_KEY_PARMS structure.

Descriptions

The contents of the ‘key’ field will vary depending upon the corresponding key algorithm:

Algorithm Id ‘Key’ Contents

TCPA_ALG_RSA The RSA public modulus

Version 1.1a 1 December 2001

TCPA Main Specification Page 69

4.27.3 TCPA_PUBKEY

Definition

typedef struct tdTCPA PUBKEY{
TCPA_KEY_PARMS al gori t hmPar ns;
TCPA_STORE_PUBKEY pubKey;
} TCPA_PUBKEY;

Parameters

Type Name Description

TCPA KEY_PARNMS al gorithnParns | This SHALL be the information regarding this key
TCPA _STORE_PUBKEY pubKey This SHALL be the public key information

Descriptions

The pubKey member of this structure shall contain the public key for a specific algorithm.

Version 1.1a 1 December 2001

TCPA Main Specification Page 70

4.27.4TCPA_STORE_ASYMKEY
Start of informative comment:

The TCPA_STORE_ASYMKEY structure provides the area to identify the confidential information related
to a key. This will include the private key factors for an asymmetric key.

The structure is designed so that encryption of a TCPA_STORE_ASYMKEY structure containing a 2048
bit RSA key can be done in one operation if the encrypting key is 2048 bits.

Using typical RSA notation the structure would include P, and when loading the key include the
unencrypted P*Q which would be used to recover the Q value.

To accommodate the future use of multiple prime RSA keys the specification of additional prime factors is
an optional capability.

This structure provides the basis of defining the protection of the private key. For the complete description
of the entire encryption process, see S.El

Changes in this structure MUST be reflected in the TCPA_MIGRATE_ASYMKEY structure (section

End of informative comment.

Definition
typedef struct tdTCPA_STORE_ASYMKEY { /'l pos I en t ot al
TCPA_PAYLOAD TYPE payl oad; /1 0 1 1
TCPA SECRET usageAut h; /1 1 20 21
TCPA SECRET mi grati onAut h; /1 21 20 41
TCPA DI GEST pubDat aDi gest ; /1 41 20 61
TCPA_STORE_PRI VKEY pri vKey; /1 61 132-151 193-214
} TCPA_STORE_ASYMKEY;
Parameters
Type Name Description
TCPA_PAYLOAD_TYPE payl oad This SHALL set to TCPA_PT_ASYM to indicate an
asymmetric key.
TCPA SECRET usageAut h This SHALL be the authorization data necessary to authorize
the use of this value
TCPA_SECRET mi grati onAut h | This SHALL be the migration authorization data for a
migratable key, or the TPM secret value tpmProof for a non-
migratable key created by the TPM.
If the TPM sets this parameter to the value tpmProof, then the
TCPA_KEY .keyFlags.migratable of the corresponding
TCPA_KEY structure MUST be set to 0.
If this parameter is set to the migration authorization data for
the key in parameter PrivKey, then the
TCPA_KEY .keyFlags.migratable of the corresponding
TCPA_KEY structure SHOULD be set to 1.
TCPA DI GEST pubDat abi gest | This SHALL be the digest of the corresponding TCPA _KEY
structure, excluding the fields TCPA_KEY.encSize and
TCPA_KEY.encData.
When TCPA_KEY -> pcrinfoSize is 0 then the digest
calculation has no input from the pcrinfo field. The pcrinfoSize

Version 1.1a 1 December 2001

TCPA Main Specification

Page 71

field MUST always be part of the digest calcuation.

TCPA_STORE_PRI VKEY

pri vKey

This SHALL be the private key data. The privKey can be a
variable length which allows for differences in the key format.
The maximum size of the area would be 151 bytes.

Version 1.1a 1 December 2001

TCPA Main Specification Page 72

4.27.5TCPA_STORE_PRIVKEY
Start of informative comment:

This structure can be used in conjunction with a corresponding TCPA_PUBKEY to construct a private key
which can be unambiguously used.

End of informative comment.

typedef struct tdTCPA_STORE_PRI VKEY {
U NT32 keyLengt h;
[size_is(keyLength)] BYTE* key;
} TCPA STORE_PRI VKEY;

Parameters

Type Name Description

Ul NT32 keyLengt h This SHALL be the length of the key field.

BYTE* key This SHALL be a structure interpreted according to
the algorithm Id in the corresponding TCPA_KEY
structure.

Descriptions
All migratable keys MUST be RSA keys with two (2) prime factors.

For non-migratable keys, the size, format and contents of privKey.key MAY be vendor specific and MAY
not be the same as that used for migratable keys. The level of cryptographic protection MUST be at least
as strong as a migratable key.

Algorithm Id key Contents

TCPA_ALG_RSA When the numPrimes defined in the corresponding TCPA_RSA_KEY_PARMS
field is 2, this shall be one of the prime factors of the key. Upon loading of the
key the TP ulates the other prime factor by dividing the modulus, stated
in section 10.4.T: TCPA_RSA PUBKEY, by this value.

The TPM MAY support RSA keys with more than two prime factors. Definition
of the storage structure for these keys is left to the TPM Manufacturer.

Version 1.1a 1 December 2001

TCPA Main Specification

4.27.6 TCPA_MIGRATE_ASYMKEY
Start of informative comment:

The TCPA_MIGRATE_ASYMKEY structure provides the area to identify the private key factors of a
asymmetric key while the key is migrating between TPM's.

This structure provides the basis of defi
of the entire encryption process, see 7.2

End of informative comment.

Page 73

Ei.llil.g]the protection of the private key. For the complete description

Definition

typedef struct tdTCPA M GRATE ASYMKEY ({ /'l pos | en t ot al
TCPA_PAYLQOAD TYPE payl oad; /1 0 1 1
TCPA_SECRET usageAut h; /1 1 20 21
TCPA DI GEST pubDat aDi gest ; /121 20 41
U NT32 partPrivKeyLen; /1 41 4 45

TCPA_STORE_PRI VKEY part Pri vKey;

} TCPA_M GRATE_ASYMKEY;

/1 45 112-127 157-172

Parameters

Type Name Description

TCPA_PAYLQOAD TYPE payl oad This SHALL set to TCPA_PT_MIGRATE to indicate
an migrating asymmetric key or TCPA_PT_MAINT to
indicate a maintenance key.

TCPA_SECRET usageAut h This SHALL be a copy of the usageAuth from the
TCPA_STORE_ASYMKEY structure.

TCPA DI GEST pubDat abDi gest This SHALL be a copy of the pubDataDigest from the
TCPA_STORE_ASYMKEY structure.

Ul NT32 part PrivKeyLen | This SHALL be the size of the partPrivKey field

TCPA_STORE_PRI VKEY

part Pri vKey

iﬂ:ﬁﬁ«u be the k2 area as defined in section

Version 1.1a 1 December 2001

TCPA Main Specification

Page 74

4.28 TCPA_CERTIFY_INFO Structure

Start of informative comment:

When the TPM certifies a key, it must provide a signature with a TPM identity key on information that
describes that key. This structure provides the mechanism to do so.

End of informative comment.

IDL Definition

typedef struct tdTCPA CERTI FY_I NFO{

TCPA VERSI ON ver si on;
TCPA_KEY_USAGE keyUsage;
TCPA _KEY_FLAGS keyFl ags;
TCPA_AUTH _DATA USAGE aut hDat aUsage;
TCPA_KEY_PARMS al gori t hnPar rs;
TCPA_DI GEST pubkeyDi gest ;
TCPA _NONCE dat a;

BOOL par ent PCRSt at us;

U NT32 PCRI nf 0Si ze;

[size_is(pcrinfoSize)] BYTE* PCRI nfo;
Parameters
Type Name Description
TCPA_VERSION versi on TCPA version structure; section 4.5]
TCPA_KEY_USAGE | keyUsage This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified
TCPA_KEY_FLAGS | keyFl ags This SHALL be set to the same value as the

corresponding parameter in the TCPA_KEY structure
that describes the public key that is being certified

TCPA_AUTH_DATA
_USAGE

aut hDat aUsage

This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified

TCPA_KEY_PARMS

al gori t hnPar s

This SHALL be the same value that would be set in a
TCPA_KEY representation of the key to be certified

TCPA_DIGEST pubKeyDi gest This SHALL be a digest of the value TCPA_KEY ->
pubKey -> key in a TCPA_KEY representation of the
key to be certified

TCPA_NONCE dat a This SHALL be externally provided data.

BOOL par ent PCRSt at us This SHALL indicate if any parent key was wrapped to a
PCR

UINT32 PCRI nf 0Si ze This SHALL be the size of the pcrinfo parameter. A
value of zero indicates that the key is not wrapped to a
PCR

BYTE* PCRI nf o This SHALL be the TCPA_PCR_INFO structure.

Version 1.1a 1 December 2001

TCPA Main Specification Page 75

4.29 TCPA_QUOTE_INFO Structure

Start of informative comment:
This structure provides the mechanism for the TPM to quote the current values of a list of PCRs.

End of informative comment.

IDL Definition

typedef struct tdTCPA QUOTE | NFQ[
TCPA VERSI ON ver si on;
BYTE fi xed[4];
TCPA_COMPCSI TE_HASH di gest Val ue;
TCPA _NONCE ext er nal Dat a,

} TCPA QUOTE_I NFQ,

Parameters

Type Name Description

TCPA _VERSION version TCPA version structure; section 4.5'_|_|
BYTE fixed This SHALL always be the string ‘QUOT’

TCPA_COMPOSITE_HASH | di gest Val ue This SHALL be the result of the composite hash
algorithm using the current values of the requested
PCR indices.

TCPA_NONCE ext er nal Dat a 160 bits of externally supplied data

Version 1.1a 1 December 2001

TCPA Main Specification Page 76

4.30 Identity Structures

4.30.1 TCPA_IDENTITY_CONTENTS
Start of informative comment:

TPM_Makeldentity uses this structure and the signature of this structure goes to a privacy CA during the
certification process.

End of informative comment.

Definition
typedef struct tdTCPA | DENTI TY_CONTENTS ({
TCPA_VERSI ON ver
Ul NT32 ordi nal ,
TCPA CHOSENI D_HASH | abel Pri vCADi gest,
TCPA_PUBKEY i denti t yPubKey;
} TCPA_| DENTI TY_CONTENTS;
Parameters
Type Name Description
TCPA_VERSION ver This SHAET be the version specified in
section 4.57
UINT32 or di nal This SHALL be the ordinal of the
TPM_Makeldentity command.
TCPA_CHOSENID_HASH | abel Pri vCADi gest This SHALL be the result of hashing the
chosen identityLabel and privacyCA for the
new TPM identity (see 1D.4.6|for details)
TCPA_PUBKEY i denti t yPubKey This SHALL be the public key structure of the
identity key

Version 1.1a 1 December 2001

TCPA Main Specification

4.30.2 TCPA_IDENTITY_REQ

Start of informative comment:

Page 77

This structure is sent by the TSS to the Privacy CA to create the identity credential.

End of informative comment.

Parameters

Type Name Description

UINT32 asynti ze This SHALL be the size of the asymmetric
encrypted area created by
TSS_CollateldentityRequest

UINT32 synsi ze This SHALL be the size of the symmetric

encrypted area created by
TSS_CollateldentityRequest

TCPA_KEY_PARMS

asymAl gorithm

This SHALL be the parameters for the asymmetric
algorithm used to create the asymBIlob

TCPA_KEY_PARMS

symAl gorithm

This SHALL be the parameters for the symmetric
algorithm used to create the symBlob

BYTE* asymBl ob This SHALL be the asymmetric encrypted area
from TSS_CollateldentityRequest
BYTE* symBl ob This SHALL be the symmetric encrypted area

from TSS_CollateldentityRequest

Version 1.1a 1 December 2001

TCPA Main Specification

4.30.3 TCPA_IDENTITY_PROOF

Start of informative comment:

Page 78

This structure is used during the process quollating a Request for a Trusted Platform Module ldentity”

End of informative comment.

Type Name Description

TCPA_VERSION ver This SHALL be the version specified in section 4.5.

UINT32 | abel Si ze This SHALL be the size of the label area

UINT32 i denti t yBi ndi ngSi ze This SHALL be the size of the identitybinding area

UINT32 endor senent Si ze This SHALL be the size of the endorsement
credential

UINT32 pl at f orntSi ze This SHALL be the size of the platform credential

UINT32 conf or manceSi ze This SHALL be the size of the conformance

credential

TCPA_PUBKEY i denti tyKey This SHALL be the public key of the new identity

BYTE* | abel Area This SHALL be the text label for the new identity

BYTE* i dentityBi ndi ng This SHALL be the signature value of
TCPA_IDENTITY_CONTENTS structure from the
TPM_Makeldentity command

BYTE* endor senent Cr edent i al This SHALL be the TPM endorsement credential

BYTE* pl at f or nCr edent i al This SHALL be the TPM platform credential

BYTE* conf or manceCr edent i al This SHALL be the TPM conformance credential

Version 1.1a 1 December 2001

TCPA Main Specification

4.30.4 TCPA_ASYM_CA_CONTENTS

Start of informative comment:

Page 79

This structure contains the symmetric key to encrypt the identity credential.

End of informative comment.

Definition

typedef struct tdTCPA_ASYM CA CONTENTS{
TCPA_SYMVETRI C_KEY sessi onKey;

TCPA DI GEST i dDi gest;
} TCPA_ASYM CA CONTENTS;

Parameters

Type

Name

Description

TCPA_SYMMETRIC_KEY

sessi onkKey

This SHALL be the session key used by the CA to encrypt
the TCPA_IDENTITY_CREDENTIAL

TCPA_DIGEST

i dDi gest

This SHALL be the digest of the TPM identity public key
that is being certified by the CA

Version 1.1a 1 December 2001

TCPA Main Specification Page 80

4.30.5 TCPA_SYM_CA_ATTESTATION

Type Name Description
UINT32 credSi ze This SHALL be the size of the credential parameter
TCPA_KEY_PARMS al gorithm This SHALL be the indicator and parameters for the

symmetric algorithm

BYTE* credenti al This is the result of encrypting
TPM_IDENTITY_CREDENTIAL using the session_key and
the algorithm indicated “algorithm”

Version 1.1a 1 December 2001

TCPA Main Specification Page 81

4.31 TCPA_CAPABILITY_AREA

Start of informative comment:
To identify a capability to be queried.

End of informative comment.

TCPA_CAPABILITY_AREA Values

Value Capability Name Comments

0x00000001 | TCPA_CAP_ORD Queries whether a command is supported.
0x00000002 | TCPA_CAP_ALG Queries whether an algorithm is supported.
0x00000003 | TCPA_CAP_PID Queries whether a protocol is supported.
0x00000004 | TCPA _CAP_FLAG Queries whether a flag is on or off.
0x00000005 | TCPA_CAP_PROPERTY Determines a physical property of the TPM.
0x00000006 | TCPA CAP_VERSION Queries the current TPM version.
0x00000007 | TCPA CAP_KEY_HANDLE Obtains information about all key handles
0x00000008 | TPM_CAP_CHECK_LOADED Obtains information about the ability to load a key
0x00000009

0x0000000A

0x0000000B

Version 1.1a 1 December 2001

TCPA Main Specification Page 82

4.32 Credentials

Version 1.1a 1 December 2001

TCPA Main Specification Page 83

4.32.1 Evidence of Subsystem Endorsement

Description
struct TPM ENDORSEMENT_CREDENTI AL = {
BYTE | abel = “TCPA Trusted Pl atform Mdul e Endor senent”
TCPA PUBKEY publ i c_endor senment key
REFERENCE t pm_nodel
REFERENCE tpm._di stributed_validation
REFERENCE tpe_reference
TCPA_VERSI ON TCPA_VERSI ON
SI GNATURE si ghat ure_val ue}

This is an abstract definition, section 9.5.1] contains the concrete
representation.

Parameters

Type Name Description

Version 1.1a 1 December 2001

TCPA Main Specification

Page 84

BYTE

| abel

This SHALL be the ASCII characters
“TCPA Trusted Platform Module
Endorsement”

TCPA_PUBKEY

publ i c_endor senent key

This SHALL be the PUBEK returned by a
TPM_CreateEndorsementKeyPair
command.

REFERENCE

t pm_nodel

This SHALL be a reference to the type of
implementation of protected capabilities
and shielded locations that created the
PUBEK, plus a reference to the identity of
the manufacturer of that implementation.

REFERENCE

tpm.distributed_validation

This SHALL be a reference to fields that
indicate the security qualities of the
implementation of protected capabilities
and shielded locations that created the
PUBEK.

REFERENCE

tpme_reference

This SHALL be an unambiguous
indication of the identity of the (TPM)
entity that attests that the implementation
of protected capabilities and shielded
locations conforms to the TCPA
specification.

TCPA_VERSION

TCPA_VERSI ON

This SHALL be the version specified in
section 4.

SIGNATURE

si gnat ure_val ue

This SHALL be the signature over all
previous fields in
TPM_ENDORSEMENT_CREDENTIAL,
using the private key of the tpme-
reference.

When an entity presents evidence to a Privacy CA that an implementation of protected capabilities and
shielded locations conforms to the TCPA specification, that evidence SHALL include the data in the data
structure TPM_ENDORSEMENT_CREDENTIAL.

A (TPME) entity SHALL NOT create the data structure TPM_ENDORSEMENT_CREDENTIAL unless the
entity is satisfied that the PUBEK referenced in TPM_ENDORSEMENT_CREDENTIAL was returned in
response to a TPM_CreateEndorsementKeyPair command by an implementation of protected capabilities
and shielded locations that meets the TCPA specification.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Version 1.1a 1 December 2001

TCPA Main Specification Page 85

4.32.2 Evidence of Platform Endorsement
Start of informative comment:

The purpose of platform_credential is to provide evidence that a platform correctly incorporates an
implementation of the protected capabilities and shielded locations of a TCPA Subsystem.

Platform_credential is an attestation that a platform contains a genuine TCPA Subsystem.
Platform_credential contains information that a Privacy CA may use in judging whether the Privacy CA
will attest to an identity of that TCPA Subsystem. Platform_credential contains information that the
Privacy CA must use in attesting to an identity of that TCPA Trusted Platform Subsystem.

Platform_credential is tagged with TCPA_VERSION so as to indicate the version of the capability that
created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

« TPM-reference is the means of referencing the specific implementation of protected capabilities and
shielded locations that is incorporated into the platform. It will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity

» The conformance-credential contains a set of conformance UIDs that unambiguously indicate the
conformance to the TCPA specification of the TPM that is incorporated into the platform. These UIDs
are the “tpm-protection-profile” and “tpm-security-target”. The conformance credential also contains a
set of conformance UIDs that unambiguously indicate the conformance to the TCPA specification of
the means by which the platform incorporates an implementation of the TPM, the implementation of
the root-of-trust-for-measurement, and the means by which the platform incorporates an
implementation of the root-of-trust-for-measurement. These UIDs are the “foundation-protection-
profile” and “foundation-security-target”. All these UIDs will be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity.

* “TCPA Trusted Platform Endorsement” identifies a data structure as platform_credential and enables
the Platform Entity (PE) to sign the data with a key that is not exclusively reserved for signing
platform_credential.

» PE_reference is the means of referencing the PE. It may be required by the Privacy CA when judging
whether the Privacy CA will attest to a TCPA TPM identity.

» platform_model is the means of referencing the type of platform. The reference includes the
implementation of TCPA foundations in the platform. The foundations include the root-of-trust-for
measurement that is incorporated into the platform, the method of incorporation of the RTM, and the
method of incorporation of the TPM. It may be required by the Privacy CA when judging whether the
Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA when attesting to a
TCPA TPM identity.

» platform_distributed_validation is a convenient immediate reference to the security properties of the
platform. The reference includes the implementation of TCPA foundations in the platform. The
foundations include the RTM that is incorporated into the platform, the method of incorporation of the
RTM, and the method of incorporation of the TPM. It may be required by the Privacy CA when
judging whether the Privacy CA will attest to a TCPA TPM identity and is required by the Privacy CA
when attesting to a TCPA TPM identity.

Access to the platform_credential must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.
Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure platform_credential.

Version 1.1a 1 December 2001

TCPA Main Specification Page 86

An entity (PE) SHALL NOT create the data structure platform_credential unless the entity is satisfied that
the platform conforms to the conformance credential referenced inside platform_credential and contains
the TPM referenced inside platform_credential.

Definition

struct PLATFORM CREDENTI AL ={
ASCI | _STRI NG “TCPA Trusted Pl atform Endor senent”
REFERENCE tpmcredential -reference
REFERENCE conf or mance-credenti al -ref erence
REFERENCE pl at f orm TBB
REFERENCE pl atformdistributed_validation
REFERENCE pe-reference
TCPA_VERSI ON TCPA_VERSI ON
SI GNATURE si gnat ure_val ue}

This is an abstract definition, section Erzl contains the concrete
representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Pl at f or m| This SHALL be the ASCII string “TCPA

Endor senent” Trusted Platform Endorsement”

REFERENCE tpmcredential -reference This SHALL be an unambiguous indication
of the endorsement credential of the TPM
incorporated into the platform.

REFERENCE conf ormance- credenti al - This SHALL be an unambiguous indication

ref erence of the conformance UIDs that attest that the
design of the platform conforms to the
TCPA specification.

REFERENCE pl atf orm TBB This SHALL be a reference to the type of
the platform, including the TCPA
foundations in the platform, plus a reference
to the identity of the manufacturer of that
platform.

REFERENCE platformdistributed_valid | This SHALL be fields that indicate the

ation general security qualities of the platform.

REFERENCE pe-reference This SHALL be an unambiguous indication
of the identity of the (platform) entity that
attests to the design and construction of the
platform.

TCPA_VERSION TCPA_VERSI ON This SHAER be the version specified in
section 4.5

SIGNATURE si gnat ure_val ue This SHALL be the signature over all
previous fields in platform_credential, using
the private key of the pe-reference.

If the data structure platform_credential is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Version 1.1a 1 December 2001

TCPA Main Specification Page 87

4.32.3 Evidence of Platform Conformance
Start of informative comment:

The purpose of conformance_credential is to provide evidence that the design of the Subsystem in a
platform correctly conforms to the TCPA specification, and that the design of the method of incorporation
of the Subsystem in the platform correctly conforms to the TCPA specification.

Conformance_credential is an attestation that the overmdesign of a platform satisfies the TCPA
specification. Conformance_credential contains information that a Privacy CA may use in judging whether
the Privacy CA will attest to an identity of that TCPA Subsystem. Conformance_credential contains
information that the Privacy CA must use in attesting to an identity of that TCPA Trusted Platform
Subsystem.

Conformance_credential is tagged with TCPA VERSION so as to indicate the version of the capability
that created the PUBEK at the time that the key was generated. This may be useful in the event that
capabilities are field-upgraded.

Conformance_credential contains identifiers (UIDs) that indicate the protection profile and the security
target of both the TPM and the RTM, and the methods by which they are incorporated into the platform.

End of informative comment.
Description

When an entity presents evidence to a Privacy CA that a platform conforms to the TCPA specification,
that evidence SHALL include the data in the data structure conformance_credential.

A (conformance) entity SHALL NOT create the data structure conformance_credential unless the entity is
satisfied that the design of both the Subsystem and its incorporation into the platform are accurately and
unambiguously represented by the information in conformance_credential.

typedef struct CONFORVANCE CREDENTI AL ={

ASCI | _STRI NG “TCPA Confornance Credential”
CONFORM_UI D tpm pp
CONFORM_UI D t pm st
CONFORM_UI D foundati on_pp
CONFORM _UI D foundati on_st
REFERENCE ce_reference
TCPA_VERSI ON TCPA_VERSI ON
SI GNATURE signature
}
This is an abstract definition; section 9.E§|contains the concrete representation.
Parameters
Type Name Description
ASCII_STRING “TCPA Conf or mance | This SHALL be the ASCII string “TCPA
Credential” Conformance Credential”
CONFORM_UID tpm_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM
CONFORM_UID t pm st This SHALL be the UID that unambiguously
identifies the security target of the TPM
CONFORM_UID foundati on_pp This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.
CONFORM_UID f oundat i on_st This SHALL be the UID that unambiguously

Version 1.1a 1 December 2001

TCPA Main Specification Page 88

identifies the security target of the TCPA
foundations in the platform.

REFERENCE ce_reference This SHALL be an unambiguous indication of
the identity of the (Conformance) entity that
attests to the overall design of the platform.

TCPA_VERSION TCPA_VERSI ON This SHALL be the version specified in section
4.5,
SIGNATURE si gnature_val ue This SHALL be the signature over all previous

fields in CONFORMANCE_CREDENTIAL,
using the private key of the ce_reference.

Version 1.1a 1 December 2001

TCPA Main Specification Page 89

4.32.4 TCPA Validation Data
Start of informative comment:

The purpose of TCPA Validation Data is to state the values of integrity metrics that should be obtained
when the component described by the validation data is working properly.

TCPA Validation Data identifies a data structure as validation_data anhenables the PE to sign the data
with a key that is not exclusively reserved for signing validation_data.

End of informative comment.

All components that influence the software environment in a platform SHOULD have corresponding
validation data.

The representation of a component SHALL reflect the way that the component influences the software
environment in a platform. All representations SHALL include a description of the manufacturer, the
common name of the component, the version of the component, and a field that describes the security
qualities of the component.

The representation of a component SHALL NOT in any way provide information that exposes the identity
of a specific component.

The validation data of a component SHALL be validation_data
IDL Description
typedef struct VALI DATI ON_DATA ={

ASCI | _STRI NG “TCPA Val i dati on Data”

ASCl | _STRI NG conponent _manuf act urer,

ASCI | _STRI NG conponent _nane,

ASCI | _STRI NG conponent _ver si on,

DI GEST i nstruction_di gest,

REFERENCE conponent _di stri buted_validati on,
REFERENCE ve_reference,

TCPA VERSI ON TCPA_VERSI ON,

SI GNATURE val i dati on_dat a_si gnat ure_val ue}

This is an abstract definition; section 9.@contains the concrete representation.

Parameters

Type Name Description

ASCII_STRING “TCPA Val idation Data” This SHALL be the ASCII string “TCPA
Validation Data.”

ASCII_STRING component _manuf act ur er This SHALL be an ASCII string stating the
name of the manufacturer of the
component.

ASCII_STRING conponent _nane This SHALL be an ASCII string stating the
common name of the component.

ASCII_STRING conponent _ver si on This SHALL be an ASCII string stating the
version of the component.

DIGEST i nstruction_di gest This SHALL be a digest of any
instructions in the component that are
intended to execute on the main
computing engine of the platform.

| — |

REFERENCE conponent—di stri but ed_ | This SHALL be a convenient immediate

val i dation reference to the security properties of the

Version 1.1a 1 December 2001

TCPA Main Specification Page 90

reference to the security properties of the
component.

REFERENCE ve_reference This SHALL be an unambiguous
indication of the identity of the (validation)
entity that attests to the validation data.

TCPA_VERSION TCPA_VERSI ON This SHALL be the version specified in
section 4.5.
SIGNATURE val i dati on_dat a_si gnat This SHALL be the result of signing all
ure_val ue fields (except this field) in

VALIDATION_DATA using the signature
(private) key of VE_reference.

4.32.5 Evidence of Trusted Platform Module Identity
Start of informative comment:

The data in TPM_IDENTITY_CREDENTIAL is presented whenever an entity requires proof that an
anonymous identity belongs to a genuine TCPA Subsystem.

TPM_IDENTITY_CREDENTIAL may be accompanied by other data, depending upon circumstances.
When presented in response to an integrity challenge, it may be accompanied by conventional certificates
and validation data, for example.

TPM_IDENTITY_CREDENTIAL is tagged with TCPA VERSION so as to indicate the version of the
capability that created the identity key at the time that the key was generated. This may be useful in the
event that capabilities are field-upgraded.

The phrase “TCPA Trusted Platform Module identity” identifies a data structure as a Trusted Platform
Module identity and enables the Privacy CA to sign the data with a key that is not exclusively reserved for
signing TPM identities.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.
Description

When an entity presents evidence that an identity belongs to a Subsystem, that evidence SHALL include
the data in the data structure TPM_IDENTITY_CREDENTIAL.

struct TPM_| DENTI TY_CREDENTI AL ={

ASCI | _STRI NG “TCPA Trusted Platformldentity”
UNI CODE i dentitylLabel

TCPA_PUBKEY i dent i t yPubKey

REFERENCE t pm_nodel

REFERENCE tpmdi stributed_validation
CONFORM_UI D tpm_pp

CONFORM_UI D t pm st

REFERENCE pl at f or m nodel

REFERENCE pl atformdi stributed_validation
CONFORM _UI D foundati on_pp

CONFORM _UI D foundati on_st

REFERENCE p-ca_reference

TCPA_VERSI ON TCPA_VERSI ON

SI GNATURE si gnat ure_val ue}

This is an abstract definition; section 9.5.5 contains the concrete representation.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 91

Parameters

Type Name Description

ASCII_STRING “TCPA Trusted Pl atform| This SHALL be the ASCIl string “TCPA
Modul e I dentity” Trusted Platform Identity.”

UNICODE i dentityLabel This SHALL be a textual string associated

with the TPM identity.

TCPA_PUBKEY

i denti t yPubKey

This SHALL be a public key associated with
the TPM identity.

REFERENCE t pm _nodel This SHALL be a reference to the type of TPM
in the platform, plus a reference to the identity
of the manufacturer of TPM.

REFERENCE tpm._di stributed_validation | This SHALL be fields that indicate the security

gualities of the TPM in the platform.

CONFORM_UID tpm pp This SHALL be the UID that unambiguously
identifies the protection profile of the TPM
CONFORM_UID t pm st This SHALL be the UID that unambiguously

identifies the security target of the TPM

REFERENCE pl at f or m_nodel This SHALL be a reference to the type of the
platform, including the TCPA foundations in
the platform, plus a reference to the identity of
the manufacturer of that platform.

REFERENCE pl atform.distributed_valid | This SHALL be fields that indicate the security

ation

qualities of the platform.

CONFORM_UID

foundati on_pp

This SHALL be the UID that unambiguously
identifies the protection profile of the TCPA
foundations in the platform.

CONFORM_UID

foundati on_st

This SHALL be the UID that unambiguously
identifies the security target of the TCPA
foundations in the platform.

REFERENCE

p-ca_reference

This SHALL be an unambiguous indication of
the identity of the (Privacy CA) entity that
attests to the TPM identity.

TCPA_VERSION

TCPA_VERSI ON

This SHALL be the version specified in
section 4.5.

SIGNATURE

si gnat ure_val ue

This SHALL be the signature over all previous
fields in TPM_IDENTITY_CREDENTIAL,
using the private key of the p-ca_reference.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to

authorized entities.

Version 1.1a 1 December 2001

TCPA Main Specification Page 92

4.33 Command Ordinals

Start of informative comment:

The command ordinals provide the index value for each command. The following list contains both the
index value and a flag that indicates the default audit state of the command. The commands selected to be
audited by default are those that substantially change the state of the TPM and/or the protected storage
hierarchy.

TCPA commands are divided into three classes: Protected/Unprotected, Non-Connection/Connection
related, and TCPA/Vendor.

End of informative comment.

Ordinals are 32 bit values. The upper byte contains values that serve as flag indicators, the next byte
contains values indicating what committee designated the ordinal, and the final two bytes contain the
Command Ordinal Index.

3 2 1
10987654321098765432109876543210
B i aT e o S e S S it st ot i STSI S U SR U Sy o S S S S S 3
| Pl C| V| Reserved| Pur vi ew | Command Ordi nal | ndex |
B T S s s S S i Sl SR SRR Sy
Where:

* P is Protected/Unprotected command. When 0 the command is a Protected command, when 1
the command is an Unprotected command.

e C is Non-Connection/Connection related command. When 0 this command passes through to
either the protected (TPM) or unprotected (TSS) components.

e Vis TCPA/NVendor command. When 0 the command is TCPA defined, when 1 the command is
vendor defined.

» Allreserved area bits are set to 0.

The following masks are created to allow for the quick definition of the commands

Value Event Name Comments

0x00000000 | TCPA_PROTECTED_COMMAND TPM protected command, specified in main
specification

0x80000000 | TCPA_UNPROTECTED_COMMAND TSS command, specified in the TSS
specification

0x40000000 | TCPA_CONNECTION_COMMAND TSC command, protected connection

commands are specified in the main
specification. Unprotected connection
commands are specified in the TSS.

0x20000000 | TCPA_VENDOR_COMMAND Command that is vendor specific for a given
TPM or TSS.

Version 1.1a 1 December 2001

TCPA Main Specification Page 93

The following Purviews have been defined:

Value Event Name Comments

0x00 TCPA_MAIN Command is from the main specification
0x01 TCPA_PC Command is specific to the PC

0x02 TCPA_PDA Command is specific to a PDA

0x03 TCPA_CELL_PHONE Command is specific to a cell phone

Combinations for the main specification would be

Value Event Name

TCPA_PROTECTED_COMMAND | TCPA_MAIN TCPA_PROTECTED_ORDINAL

TCPA_UNPROTECTED_COMMAND | TCPA_MAIN | TCPA_UNPROTECTED_ORDINAL

TCPA_CONNECTION_COMMAND | TCPA_MAIN TCPA_CONNECTION_ORDINAL

If a command is tagged from the audit column the default state is that use of that command SHALL be
audited. Otherwise, the default state is that use of that command SHALL NOT be audited.

TCPA_PROTECTED_ORDI NAL Audi t

+
TPM_ORD_O AP 10
TPM ORD OSAP 11
TPM_ORD_ChangeAut h 12
TPM ORD TakeOwner ship 13 X
TPM ORD_ChangeAut hAsynft ar t 14
TPM_ORD_ChangeAut hAsynFi ni sh 15
TPM ORD ChangeAut hOaner 16 X
TPM ORD Ext end 20
TPM ORD Pcr Read 21
TPM ORD Quot e 22
TPM_ORD_Seal 23 X
TPM ORD Unseal 24
TPM ORD DirWiteAuth 25 X
TPM_ORD _Di r Read 26
TPM ORD_UnBi nd 30
TPM ORD _Cr eat eW apKey 31 X
TPM_ORD_LoadKey 32
TPM ORD Cet PubKey 33
TPM_ORD_Evi ct Key 34
TPM ORD Creat eM grati onBl ob 40 X
TPM ORD_ReW apKey 41
TPM ORD Convert M grationBl ob 42 X
TPM ORD_Aut hori zeM gr ati onKey 43 X
TPM ORD Cr eat eMai nt enanceAr chi ve 44 X
TPM _ORD _LoadMai nt enanceAr chi ve 45 X
TPM ORD Ki | | Mai nt enanceFeat ure 46 X
TPM ORD LoadManuMai nt Pub 47 X

Version 1.1a 1 December 2001

TCPA Main Specification Page 94
TPM ORD_ReadManuMai nt Pub 48 X
TPM ORD Certi fyKey 50

TPM ORD_Si gn 60

TPM_ORD_Get Random 70

TPM ORD_StirRandom 71

TPM ORD_Sel f Test Ful | 80

TPM ORD Sel f Test Startup 81

TPM ORD CertifySel f Test 82

TPM ORD Conti nueSel f Test 83

TPM ORD Get Test Resul t 84

TPM ORD _Reset 90 X
TPM _ORD_Omner O ear 91 X
TPM ORD Di sabl eOaner C ear 92 X
TPM ORD For ced ear 93 X
TPM ORD Di sabl eForced ear 94 X
TPM ORD Cet Capabi |l itySi gned 100

TPM ORD GCet Capability 101

TPM ORD_Cet Capabi | i t yOaner 102

TPM ORD_Oaner Set Di sabl e 110 X
TPM ORD Physi cal Enabl e 111 X
TPM ORD Physi cal Di sabl e 112 X
TPM ORD_Set Omner | nst al | 113 X
TPM ORD_Physi cal Set Deacti vat ed 114 X
TPM ORD Set TenpDeacti vat ed 115 X
TPM ORD Cr eat eEndor senment KeyPai r 120 X
TPM ORD Makel dentity 121 X
TPM ORD Activateldentity 122 X
TPM ORD ReadPubek 124 X
TPM ORD_Oaner ReadPubek 125 X
TPM ORD _Di sabl ePubekRead 126 X
TPM_ORD_Cet Audi t Event 130 X
TPM ORD Cet Audi t Event Si gned 131 X
TPM ORD Cet Or di nal Audi t St at us 140

TPM ORD_Set Or di nal Audi t St at us 141 X
TPM ORD Ter mi nat e_Handl e 150

TPM ORD I nit 151 X
TPM ORD _SaveSt at e 152 X
TPM_ORD_St art up 153 X
TPM ORD Set Redi rection 154 X
TPM_ORD_SHA1St art 160

TPM ORD SHAlUpdat e 161

TPM ORD SHA1Conpl et e 162

Version 1.1a 1 December 2001

TCPA Main Specification Page 95

TPM ORD_SHA1Conpl et eExt end 163
TPM ORD Fi el dUpgr ade 170
TPM ORD_SaveKeyCont ext 180
TPM ORD LoadKeyCont ext 181
TPM ORD_SaveAut hCont ext 182
TPM ORD LoadAut hCont ext 183

The connection commands manage the TPM’s connection to the TBB.

TCPA_CONNECTI ON_ORDI NAL +

TSC_ORD Physi cal Presence 10

Version 1.1a 1 December 2001

TCPA Main Specification Page 96

5. Authorization and Ownership

5.1 Introduction
Start of informative comment:

The purpose of the authorization mechanism is to authenticate an owner and to authorize use of an entity.
The basic premise is to prove knowledge of a shared secret. This shared secret is the authorization data.

Authorization data is available for the TPM Owner and each entity (keys, for example) that the TPM
controls. The authorization data for the TPM Owner and the SRK are held within the TPM itself and the
authorization data for other entities are held with the entity.

The TPM Owner authorization data allows the Owner to prove ownership of the TPM. Proving ownership of
the TPM does not immediately allow all operations — the TPM Owner is not a “super user” and additional
authorization data must be provided for each entity or operation that has protection.

The TPM treats knowledge of the authorization data as complete proof of ownership of the entity. No other
checks are necessary. The requestor (any entity that wishes to execute a command on the TPM or use a
specific entity) may have additional protections and requirements where he or she (or it) saves the
authorization data; however, the TPM places no additional requirements.

There are two protocols to securely pass a proof of knowledge of authorization data from requestor to TPM,;
the “Object-Independent Authorization Protocol” (OI-AP) and the “Object-Specific Authorization Protocol”
(OS-AP). The OI-AP supports multiple authorization sessions for arbitrary entities. The OS-AP supports an
authentication session for a single entity and enables the confidential transmission of new authorization
information. That new authorization information is inserted by the “Authorization Data Insertion Protocol”
(ADIP) during the creation of an entity. The “Authorization Data Change Protocol” (ADCP) and the
“Asymmetric Authorization Change Protocol” (AACP) allow the changing of the authorization data for an
entity. The protocol definitions allow expansion of protocol types to additional TCPA required protocols and
vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in use only for a
message and its reply. For instance, the TPM would create a nonce and send that on a reply. The requestor
would receive that nonce and then include it in the next request. The TPM would validate that the correct
nonce was in the request and then create a new nonce for the reply. This mechanism is in place to prevent
replay attacks and man-in-the-middle attacks.

The basic protocols do not provide long-term protection of authorization data that is the hash of a password
or other low-entropy entities. The TPM designer and application writer must supply additional protocols if
protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and parameter
authentication and prevent replay and man-in-the-middle attacks.

The passing of the authorization data, nonces and other parameters must follow specific guidelines so that
commands coming from different computer architectures will interoperate properly.

End of informative comment.
All entity authorizations requiring authorization MUST use the authorization data protocols.

The TPM MUST support the OI-AP and the OS-AP which enable proof of knowledge of authorization data
while maintaining the secrecy of that authorization data.

The TPM MUST support the ADIP that inserts the authorization during entity creation.
The TPM MUST support the ADCP and AACP which allow for the changing of authorization data.
The TPM MUST support TPM_Terminate_Handle which forces the termination of a session.

The TPM MAY support additional protocols to authenticate, insert and change authorization data.

Version 1.1a 1 December 2001

TCPA Main Specification Page 97

The TPM MUST support the ability to calculate a HMAC in order to verify authorization data independent
of the source or transmission mechanism. The TPM MUST calculate the HMAC digest according to
section 8@ The TPM MUST NOT perform the HMAC calculation for a returning message when the
authorization for the command fails or the command fails for any other reason.

If a command has more than one authorization value, each authorization session MUST use the same
SHA-1 parameter digest (<paramDigest> from Sect. 4.4.2) plus its respective authorization setup
parameters (nonces, authHandles, etc) in the HMAC calculation. For example, the capability
P.3.1TPM_Makeldentity requires authorization from both the TPM Owner and from the SRK owner. So
the authentication information “TpmOwnerAuth” and “SrkAuth” are each calculated over all parameters
tagged with an ‘S’ subscript in the definition of TPM_Makeldentity.

All commands that use keys normally include at least one authorization session in the input parameters. If
AuthDataUsage is set to TPM_AUTH_NEVER for that key, then the command does not need to be
authorized. To implement this, the 5 authorization parameters at the end of the input parameter list should
be removed and the tag value (first parameter) changed from TPM_TAG_RQU_AUTH1 COMMAND to
TPM_TAG_RQU_COMMAND.

When an incoming command includes an authorization session but the authorized key has
AuthDataUsage set to NEVER the TPM MUST perform the following:

» If the value of the command tag is TPM_TAG_RQU_AUTH1_COMMAND the TPM will compute
the authorization based on the value store in the authorization location within the key, IGNORING
the state of the AuthDataUsage flag.

* Users may choose to use a well-known value for the authorization data when setting
AuthDataUsage to NEVER.

For commands that normally have 2 authorization sessions, if the tag specifies only one in the parameter
array, then the first session listed is ignored (authDataUsage must be NEVER for this key) and the
incoming session data is used for the second auth session in the list.

Version 1.1a 1 December 2001

TCPA Main Specification Page 98

5.1.1 Tag Usage

This table summarizes what can be the tag with a given TPM command.

Tag

AUTH2_COMMAND

AUTH1_COMMAND
RQU_COMMAND

Section Name
5-6.1 TPM_ChangeAuth X
5672 TPM_ChangeAuthOwner
TPM_ChangeAuthAsymStart
TPM_ChangeAuthAsymFinish
TPM_TakeOwnership
TPM_Quote
TPM_DirWriteAuth
TPM_Seal
TPM_Unseal X
TPM_UnBind
TPM_CreateWrapKey
TPM_LoadKey
TPM_GetPubKey
TPM_CreateMigrationBlob X
TPM_ConvertMigrationBlob
TPM_AuthorizeMigrationKey
TPM_CreateMaintenanceArchive
TPM_LoadMaintenanceArchive
TPM_KillMaintenanceFeature
TPM_CertifyKey X
TPM_Sign
TPM_CertifySelfTest
TPM_OwnerClear
TPM_DisableOwnerClear
TPM_GetCapabilitySigned
TPM_GetCapabilityOwner
TPM_GetAuditEventSigned
TPM_SetOrdinalAuditStatus
TPM_OwnerSetDisable
TPM_SetRedirection
523 TPM_DisablePubekRead
@ TPM_OwnerReadPubek

El TPM_Makeldentity X
@ TPM_Activateldentity X

X X X X

X X

Version 1.1a 1 December 2001

TCPA Main Specification Page 99

5.2 Authorization protocols
Start of informative comment:

The TPM provides two protocols for authorizing the use of entities without revealing the authorization data
on the network or the connection to the TPM. In both cases, the protocol exchanges nonce-data so that
both sides of the transaction can compute a hash using shared secrets and nonce-data. Each side
generates the hash value and can compare to the value transmitted. Network listeners cannot directly infer
the authorization data from the hashed objects sent over the network.

The first protocol is the “Object-Independent Authorization Protocol” (OI-AP), which allows the exchange of
nonces with a specific TPM. Once an OI-AP session is established, its nonces can be used to authorize the
use any entity managed by the TPM. The session can live indefinitely until either party request the session
termination. The TPM_OIAP function starts the OI-AP session.

The second protocol is the “Object Specific Authorization Protocol” (OS-AP)”. The OS-AP allows
establishment of an authentication session for a single entity. The session creates nonces that can
authorize multiple commands without additional session-establishment overhead, but is bound to a specific
entity. The TPM_OSAP command starts the OS-AP session. The TPM_OSAP specifies the entity to which
the authorization is bound.

Most commands allow either form of authorization protocol. In general, however, the OI-AP is preferred — it
is more generally useful because it allows usage of the same session to provide authorization for different
entities. The OS-AP is, however, necessary for operations that set or reset authorization data.

OI-AP sessions were designed for reasons of efficiency; only one setup process is required for potentially
many authorizations.

An OS-AP session is doubly efficient because only one setup process is required for potentially many
authorization calculations and the entity authorization secret is required only once. This minimizes exposure
of the authorization secret and can minimize human interaction in the case where a person supplies the
authorization information. The disadvantage of the OS-AP is that a distinct session needs to be setup for
each entity that requires authorization. The OS-AP creates an ephemeral secret that is used throughout the
session instead of the entity authorization secret. The ephemeral secret can be used to provide
confidentiality for the introduction of new authorization data during the creation of new entities. Termination
of the OS-AP occurs in two ways. Either side can request session termination (as usual) but the TPM forces
the termination of an OS-AP session after use of the ephemeral secret for the introduction of new
authorization data.

For both the OS-AP and the OI-AP, session setup is independent of the commands that are authorized. In
the case of OI-AP, the requestor sends the TPM_OIAP command, and with the response generated by the
TPM, can immediately begin authorizing object actions. The OS-AP is very similar, and starts with the
requestor sending a TPM_OSAP operation, naming the entity to which the authorization session should be
bound.

Both session types use a “rolling nonce” paradigm. This means that the TPM creates a new nonce value
each time the TPM uses the session for a HMAC calculation.

Note that some operations involve the use of two authorization elements (for example, UNSEAL requires
the authorization data of the object itself and authorization data of the object’'s parent). In this case, two
separate sessions are required. It is not possible to use one session for both purposes.

Version 1.1a 1 December 2001

TCPA Main Specification Page 100

For the purposes of the informative comments for the individual protocols, the following example command
will be used, named TPM_Example. Not that this command has a single authorization session, and that the
authorization secret is the auth value stored with some key. Commands in this document have from 0 to 2
authorization sessions.

Some commands within this document use secrets other than the auth value in a key. Two examples would
be owner authorized commands, or commands using key.Migration as the secret. In this case,
key.usageAuth in the examples below would be replaced with ownerAuth, key.Migration or other secrets as
necessary. In all cases, the secret used to compute the authorization digest is noted in the description for

the actual digest parameter within the command parameter lists.

Incoming Operands and Sizes

Param HMAC
Type Name Description
| Sz # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example
4 4 TCPA_KEY_HANDLE keyHandle Handle of a loaded key.
5 1 2s 1 | BOOL inArgOne The first input argument
6 [20] 3s | 20 | UNIT32 inArgTwo The second input argument.
7 4 TCPA AUTHHANDLE authHandle The aqtho'rization handle used for keyHandle
- authorization.
211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
8 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1]4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
10 | 20 TCPA_AUTHDATA inAuth I:;; ilémrsi;gg% t(:]i.gest for inputs and keyHandle. HMAC
Outgoing Operands and Sizes
Param HMAC o
Type Name Description
| Sz # Sz
1| 2 TCPA_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_Example
4 4 3s 4 | UINT32 outArgOne Output argument
5 [20 | 21 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1 J 4 1 | BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
7 1 20 TCPA_AUTHDATA resAuth Lf;ﬁjt&giﬁiﬁzgggsﬁuﬁ{ the returned parameters.

End of informative comment.

Version 1.1a 1 December 2001

TCPA Main Specification Page 101

5.2.1 OI-AP description

Version 1.1a 1 December 2001

TCPA Main Specification Page 102

Version 1.1a 1 December 2001

TCPA Main Specification Page 103

Version 1.1a 1 December 2001

TCPA Main Specification Page 104

Version 1.1a 1 December 2001

TCPA Main Specification

5.2.2 TPM_OIAP

Type
TCPA protected capability.

Incoming Operands and Sizes

Page 105

PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_OIAP.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
| SZ| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 TCPA_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.
5 20 TCPA_NONCE nonceEven Nonce generated by TPM and associated with session.
Actions
1. The TPM_OIAP command allows the creation of an authorization handle and the tracking of the
handle by the TPM. The TPM generates the handle and nonce.
2. The TPM has an internal limit as to the number of handles that may be open at one time, so the
request for a new handle may fail if there is insufficient space available.
3. Internally the TPM will do the following:
a) TPM allocates space to save handle, protocol identification, both nonces and any other
information the TPM needs to manage the session.
b) TPM generates authHandle and nonceEven, returns these to caller
4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven value.

Version 1.1a 1 December 2001

TCPAM

5.2.3
Start of

ain Specification Page 106

Authorization using an OI-AP session

informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has

been au

thorized with the OI-AP protocol.

Many commands use OI-AP authorization. The following description is therefore necessarily abstract.

End of i

Actions
perform
1.

10.

Version

nformative comment.

the following actions:

The TPM MUST verify that the authorization handle (H, say) referenced in the command points to
a valid session. If it does not, the TPM returns the error code TCPA_AUTHFAIL.

The TPM SHALL retrieve the latest version of the caller's nonce (nonceOdd) and
continueAuthSession flag from the input parameter list, and store it in internal TPM memory with
the authSession ‘H'.

The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the authorization
session H (authLastNonceEven) computed during the previously executed command.

The TPM MUST retrieve the secret authorization data (SecretkE, say) of the target entity. The
entity and its secret must have been previously loaded into the TPM.

The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input
command parameters and authorization parameters per section 1127'

The TPM SHALL compare HM to the authorization value received in the input parameters. If they
are different, the TPM returns the error code TCPA_AUTHFAIL. Otherwise, the TPM executes
the command which (for this example) produces an output that requires authentication.

The TPM SHALL generate a nonce (nonceEven).

The TPM creates an HMAC digest to authenticate the return code, return values and
authorization parameters to the same entity secret per section A‘E

The TPM returns the return code, output parameters, authorization parameters and authorization
digest.

If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. Future
references to H will return an error.

1.1a 1 December 2001

TCPA Main Specification Page 107

5.2.4 OS-AP Description

Version 1.1a 1 December 2001

TCPA Main Specification Page 108

Version 1.1a 1 December 2001

TCPA Main Specification Page 109

Version 1.1a 1 December 2001

TCPA Main Specification

5.2.5 TPM_OSAP

Start of informative comment:

Page 110

The TPM_OSAP command creates the authorization handle, the shared secret and generates
nonceEven and nonceEvenOSAP.

End of informative comment.

Type

TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description

| SZ| # | SZ

1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_OSAP.

4 2 TCPA_ENTITY_TYPE entityType The type of entity in use

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 | 20 TCPA_NONCE nonceOddOSAP 12; gt?nce generated by the caller associated with the shared
Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| SZ| # | SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TCPA_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5120 TCPA_NONCE nonceEven Nonce generated by TPM and associated with session.

6 | 20 TCPA_NONCE nonceEvenOSAP | Nonce generated by TPM and associated with shared secret.
Actions

1. The TPM_OSAP command allows the creation of an authorization handle and the tracking of the
handle by the TPM. The TPM generates the handle, nonceEven and nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows the caller to
continue to send in authorization data for each command but not have to request the information or
cache the actual authorization data.

4. Internally the TPM will do the following:

a. TPM receives command.

Version 1.1a 1 December 2001

TCPA Main Specification Page 111

b. TPM generates new handle and reserves space to save protocol identification, shared
secret, both nonces and any other information the TPM needs to manage the session.

TPM generates nonces nonceEven and nonceEvenOSAP.

d. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC
calculation is the secret authorization data assigned to the key handle identified by
entityValue. The input to the HMAC calculation is the concatenation of nonces
nonceEvenOSAP and nonceOddOSAP. The output of the HMAC calculation is the
shared secret which is saved in the authorization area associated with authHandle

Descriptions

entityType = TCPA_ET_KEYHANDLE

The entity to authorize is a key held in the TPM. entityValue contains the keyHandle that holds the key.
entityType = TCPA_ET_OWNER

This value indicates that the entity is the TPM owner. entityValue is ignored.

entityType = TCPA_ET_SRK

The entity to authorize is the SRK. entityValue is ignored.

Usage

On each subsequent use of the OSAP session the TPM MUST generate a new nonce value.

The TPM MUST ensure that OS-AP shared secret is only available while the OS-AP session is valid.
Termination

The session MUST terminate upon any of the following conditions:

* The entity is unloaded.

* The entity has a change authorization performed on it.

* The session is used in a TPM_ChangeAuth command.

« The command that uses the session returns an error.

Version 1.1a 1 December 2001

TCPA Main Specification Page 112

5.2.6 Authorization using an OS-AP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has
been authorized with the OS-AP protocol.

Many commands use OS-AP authorization. The following description is therefore necessarily abstract.
End of informative comment
Actions

On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

1. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target entity when
the authorization session was established with TPM_OSAP. The entity and its secret must have been
previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a
valid session. If it does not, the TPM returns the error code TPM_AUTHFAIL.

3. ﬁM MUST calculate the HMAC (HM1, say) of the command parameters according to section

4. The TPM SHALL compare HM1 to the authorization value received in the command. If they are
different, the TPM returns the error code TPM_AUTHFAIL. Otherwise, the TPM executes command
C1 which produces an output (O, say) that requires authentication and uses a particular return code
(RC, say).

The TPM SHALL generate the latest version of the even nonce (honceEven).
The TPM MUST calculate the HMAC (HM2) of the return parameters according to section 4.@
The TPM returns HM2 in the parameter list.

The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

© N o u

If the shared secret was used to provide confidentiality for data in the received command, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

Each time that access to an entity (key) is authorized using OSAP, the TPM MUST ensure that the OSAP
shared secret is that derived from the entity using TPM_OSAP.

Version 1.1a 1 December 2001

TCPA Main Specification Page 113

5.3 TPM_Terminate_Handle
Start of informative comment:
This allows the TPM manager to clear out information in a session handle.

The TPM may maintain the authorization session even though a key attached to it has been unloaded or
the authorization session itself has been unloaded in some way. When a command is executed that
requires this session, it is the responsibility of the external software to load both the entity and the
authorization session information prior to command execution.

End of informative comment.
Type
TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Terminate_Handle.
4 4 TCPA_AUTHHANDLE handle The handle to terminate

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Descriptions

A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of the following
events:

« Completion of a received command whose authorization “continueUse” flag is FALSE.

« Completion of a received command when a shared secret derived from the authorization session
was exclusive-or'ed with data (to provide confidentiality for that data). This occurs during
execution of a TPM_ChangeAuth command, for example.

* When the associated entity is destroyed (in the case of TPM Owner or SRK, for example)
e Upon execution of TPM_Init

* When the command returns an error. This is due to the fact that when returning an error the TPM
does not send back nonceEven. There is no way to maintain the rolling nonces, hence the TPM
MUST terminate the authorization session.

« Failure of an authorization check belonging to that authorization session.
Actions

The TPM SHALL terminate the session and destroy all data associated with the session indicated.

Version 1.1a 1 December 2001

TCPA Main Specification Page 114

5.4 ADIP - Creating a New Entity

Version 1.1a 1 December 2001

TCPA Main Specification Page 115

Version 1.1a 1 December 2001

TCPA Main Specification Page 116

The TPM MUST enable ADIP by using the OS-AP. The TPM MUST encrypt the authorization data for the
new entity by performing an XOR using the shared secret created by the OS-AP.

The TPM MUST destroy the OS-AP session whenever a new entity is created.

Version 1.1a 1 December 2001

TCPA Main Specification Page 117

5.5 ADCP - Changing Authorization Data

Changing authorization data for the TPM SHALL require authorization of the current TPM Owner.
Changing authorization data for the SRK SHALL require authorization of the TPM Owner.

If SRKAuth is a well known value, TPM_ChangeAuth SHOULD NOT be used to change the authorisation
value of a child of the SRK, including the TPM identities.

All other entities SHALL require authorization of the parent entity.

Version 1.1a 1 December 2001

TCPA Main Specification Page 118

5.6 Changing authorization values
Start of informative comment:

Changing authorization comes in two flavors one to handle blobs with authorization and one to handle the
authorization for the TPM Owner and SRK.

Functionally these two commands perform the same operation and operate on the same fields the only
difference lies in who authorizes the operation and where the data comes from.

End of informative comment.

5.6.1 TPM_ChangeAuth
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

TPM_ChangeAuth requires the encryption of one parameter (‘NewAuth”). For the sake of uniformity with
other commands that require the encryption of more than one parameter, the string used for XOR
encryption is generated by concatenating the evenNonce (created during the OSAP session) with the
session shared secret and then hashing the result.

The parameter list to this command must always include two authorization sessions, regardless of the
state of authDataUsage for the respective keys.

End of informative comment.
Type

TCPA protected capability; user must provide authorizations for the entity pointed to by parentHandle and
inData.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
Sz # | sz
1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND
9 4 UINT32 paramSize ;(;tal number of input bytes including paramSize and
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed at TPM_ORD_ChangeAuth
4 4 TCPA_KEY_HANDLE parentHandle Handle of the parent key to the entity.
5 2 2s 2 | TCPA_PROTOCOL_ID protocollD The protocol in use.
The encrypted new authorization data for the entity.
6 | 20] 3s | 20 | TCPA_ENCAUTH newAuth The encryption key is the shared secret from the OS-
AP protocol.
7 2 4s 2 | TCPA_ENTITY_TYPE entityType The type of entity to be modified
8 4 5s 4 | UINT32 encDataSize The size of the encData parameter
9 [<> | 6s | <> | BYTE[] encData The encrypted entity that is to be modified.
10 | 4 TCPA_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.
21 | 20 | TCPA_NONCE authLastNonceEven iIi\gzrtlsnonce previously generated by TPM to cover
11| 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with

Version 1.1a 1 December 2001

TCPA Main Specification

Page 119

parentAuthHandle
12 (1 | 4m | 1 | BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.
The authorization digest for inputs and parentHandle.
13 | 20 TCPA_AUTHDATA parentAuth HMAC key: parentKey.usageAuth,
. The authorization handle used for the encrypted entity.
14 | 4 TCPA_AUTHHANDLE entityAuthHandle The session type MUST be OIAP
212 | 20 | TCPA_NONCE entitylastNonceEven Even nonce previously generated by TPM
. Nonce generated by system associated with
15 |1 20 | 312 | 20 | TCPA_NONCE entitynonceOdd entityAuthHandle
16 | 1 | 42| 1 |} BOOL continueEntitySession | Ignored, entityAuthHandle is always terminated.
. The authorization digest for the inputs and encrypted
17 | 20 TCPA_AUTHDATA entityAuth entity. HMAC key: enty.usageAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
| SZ) # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_ChangeAuth
4 4 3s 4 | UINT32 outDataSize The used size of the output area for outData
5 | <] 4 | <> | BYTE[] outData The modified, encrypted entity.
6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
Nonce generated by system associated with
3u1 | 20 | TCPA_NONCE nonceOdd parentAuthHandle
7 1) 4m | 1] BOOL continueAuthSession | Continue use flag, fixed value of FALSE
The authorization digest for the returned parameters and
812 TCPA_AUTHDATA resAuth parentHandle. HMAC key: parentKey.usageAuth.
9 | 20 | 242 | 20 | TCPA_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity
. Nonce generated by system associated with
312 | 20 | TCPA_NONCE entitynonceOdd entityAuthHandle
10| 1 | 42| 1 | BOOL gzgitgr(]:ontmueAuthS Continue use flag, fixed value of FALSE
1 | 2 TCPA_AUTHDATA entityAuth The authorization digest for the returned parameters and

entity. HMAC key: newly changed entity.usageAuth.

Descriptions

A TPM MUST support the TPM_PID_ADCP protocol.

TPM_PID_ADCP protocol descriptions

The parentAuthHandle session type MUST be TCPA_PID_OSAP.

Version 1.1a 1 December 2001

TCPA Main Specification Page 120

TPM_PID_ADCP protocol actions

1.

N o ok~ w

10.
11.

12.
13.

Verify that entityType is one of TCPA _ET DATA, TCPA ET KEY and return the error
TCPA_WRONG_ENTITYTYPE if not.

The encData field MUST be the encData field from either the TCPA_STORED_DATA or TCPA_KEY
structures.

Create s1 string by concatenating (parentAuthHandle -> shared secret || authLastNonceEven)
Create x1 by performing a SHA1 hash of s1

Create decryptAuth by XOR of x1 and newAuth.

parentAuthHandle MUST be built using the parent entity’s authorization data.

The TPM MUST validate the command using the authorization data in the parentAuth parameter. The
parentRef parameter provides the identification of the parent.

After parameter validation the TPM creates bl by decrypting inData using the key pointed to by
parentHandle.

The TPM MUST validate that bl is a valid TCPA structure by verifying that the command has been
authorized to use the blob. This checks that 20B of the decrypted blob have the proper value, and
provides statistical proof that the blob was correctly decrypted.

The TPM replaces the authorization data for b1 with decryptAuth created above.

The TPM encrypts bl using the appropriate mechanism for the type using the parentKeyHandle to
provide the key information.

The new blob is returned in outData when appropriate.

The TPM MUST enforce the destruction of both the parentAuthHandle and entityAuthHandle
sessions.

Version 1.1a 1 December 2001

TCPA Main Specification

5.6.2 TPM_ChangeAuthOwner

Start of informative comment:

Page 121

The TPM_ChangeAuthOwner command allows the owner of an entity to change the authorization data for
the TPM Owner or the SRK.

This command requires authorization from the current TPM Owner to execute.

End of informative comment.

Type
TCPA protected capability; user must provide authorizations from the TPM Owner

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2s 2 | TCPA_PROTOCOL_ID protocollD The protocol in use.
The encrypted new authorization data for the entity. The

5 |20] 3s | 20 | TCPA_ENCAUTH newAuth encryption key is the shared secret from the OS-AP
protocol.

6 2 4s 2 | TCPA_ENTITY_TYPE entityType The type of entity to be modified

7 4 TCPA_AUTHHANDLE ownerAuthHandle The authorization handle used for the TPM Owner.

211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs

8 | 20 | 3m | 20 | TcPa NONCE nonceOdd Nonce generated by system associated with
ownerAuthHandle

9 1) 4m | 1] BOOL continueAuthSession | Continue use flag the TPM ignores this value
The authorization digest for inputs and ownerHandle.

10 | 20 TCPA_AUTHDATA ownerAuth HMAC key: tpmOwnerAuth.

Version 1.1a 1 December 2001

TCPA Main Specification

Outgoing Operands and Sizes

Page 122

PARAM HMAC o
Type Name Description
| SZ) # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal TPM_ORD_ChangeAuthOwner
4 1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3w | 20 | Tcea NoNCE nonceOdd Nonce generated by system associated with
ownerAuthHandle
5 1) 4m | 1] BOOL continueAuthSession | Continue use flag, fixed value of FALSE
The authorization digest for the returned parameters and
6 | 20 TCPA_AUTHDATA resAuth ownerHandle. HMAC key: tpmOwnerAuth. This is the new
tpmOwnerAuth value if this command changed that value.

Descriptions

A TPM MUST support the TPM_PID_ADCP protocol.

In this capability, the SRK cannot be accessed as entityType TCPA ET_KEY, since the SRK is not
wrapped by a parent key.

TPM_PID_ADCP protocol descriptions

The ownerAuthHandle session type MUST be TCPA_PID_OSAP.
TPM_PID_ADCP protocol actions
Verify that entityType is either TCPA_ET_OWNER or TCPA _ET_SRK, and return the error

1.

o g kM w D

TCPA_WRONG_ENTITYTYPE if not.

The ownerAuthHandle -> entityType MUST be TCPA_ET_OWNER.

Create s1 string by concatenating (ownerAuthHandle -> shared secret || authLastNonceEven)

Create x1 by performing a SHA1 hash of s1
Create decryptAuth by XOR of x1 and newAuth.

The TPM MUST enforce the destruction of the ownerAuthHandle session upon completion of this
command (successful or unsuccessful). This includes setting continueAuthSession to FALSE

Set the authorization data for the indicated entity to decryptAuth

Version 1.1a 1 December 2001

TCPA Main Specification Page 123

5.7 Asymmetric Authorization Change Protocol

Changing authorization data for the SRK SHALL involve authorization by the TPM Owner.

If SRKAuth is a well known value,

TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish SHOULD be used to change the
authorisation value of a child of the SRK, including the TPM identities.

All other entities SHALL involve authorization of the parent entity.

Version 1.1a 1 December 2001

TCPA Main Specification Page 124

5.7.1 TPM_ChangeAuthAsymStart
Start of informative comment:

The TPM_ChangeAuthAsymsStart starts the process of changing authorization for an entity. It sets up an
OI-AP session that must be retained for use by its twin TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart creates a temporary asymmetric public key “tempkey” to provide
confidentiality for new authorization data to be sent to the TPM. TPM_ChangeAuthAsymStart certifies that
tempkey was generated by a genuine TPM, by generating a certifylnfo structure that is signed by a TPM
identity. The owner of that TPM identity must cooperate to produce this command, because
TPM_ChangeAuthAsymStart requires authorization to use that identity.

It is envisaged that tempkey and certifylnfo are given to the owner of the entity whose authorization is to
be changed. That owner uses certifylnfo and a TPM_IDENTITY_CREDENTIAL to verify that tempkey was
generated by a genuine TPM. This is done by verifying the TPM_IDENTITY_CREDENTIAL using the
public key of a CA, verifying the signature on the certifylnfo structure with the public key of the identity in
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value inside
certifylnfo. The owner uses tempkey to encrypt the desired new authorization data and inserts that
encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that only a TPM with a
specific identity can interpret the new authorization data.

End of informative comment.
Type
TCPA protected capability; user must provide authorization for the identity in idHandle.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.
4 4 TCPA_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key
5 120] 2s | 20 | TCPA_NONCE antiReplay The nonce to be inserted into the certifylnfo structure
6 | <>] 3s | <> | TCPA_KEY_PARMS tempKey Structure contains all parameters of ephemeral key.
7 4 TCPA_AUTHHANDLE authHandle The authorization handle used for idHandle authorization.
211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
8 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
10 | 20 TCPA_AUTHDATA idAuth 12; ?(;J}Er;())/rlijsaggg AdJ?r?.st for inputs and idHandle. HMAC

Version 1.1a 1 December 2001

TCPA Main Specification Page 125

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # SZ
1| 2 TCPA TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart
7 19] 3s | 95 | TCPA_CERTIFY_INFO certifylnfo The certifylnfo structure that is to be signed.
8 4 4s 4 | UINT32 sigSize The used size of the output area for the signature
9 [<> | 5 | <> | BYTE[] sig The signature of the certifylnfo parameter.
ol e [o |« [romemne [ovese | permeEmEnEn
wlo]] o[romme I
12 | 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
13| 1]4m| 1 |BooL g‘;”“”“e‘\“‘hsesg Continue use flag, TRUE if handle is still active
14 | 20 TCPA_AUTHDATA resAuth Hl:l?Aa(léjtliglﬁgP(%r;/?Jlé;]ae;furt:]he returned parameters.
Actions
1. The TPM SHALL verify the authorization to use the TPM identity key held in idHandle. The TPM
MUST verify that the key is a TPM identity key.
2. The TPM SHALL validate the algorithm parameters for the key to create from the tempKey
parameter.
a. Recommended key type is RSA
b. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024
c. For other key types the minimum key size strength MUST be comparable to RSA 512
3. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The newly
created key is pointed to by ephHandle.
4. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TCPA_KEY -> encSize
MUST be 0.
5. The TPM SHALL fill in certifylnfo using k1 for the information. The certifylnfo -> data field is supplied
by the antiReplay.
6. The TPM then signs the certifylnfo parameter using the key pointed to by idHandle. The resulting

signed blob is returned in sig parameter

Version 1.1a 1 December 2001

TCPA Main Specification

Field Descriptions for certifylnfo parameter

Page 126

Type

Name

Description

TCPA_VERSION

Ver si on

TCPA version structure; section 4.5.]

keyFlags Redi rection This SHALL be set to FALSE
M gr at abl e This SHALL be set to FALSE
Vol atil e This SHALL be set to TRUE

TCPA_AUTH_DATA
_USAGE

aut hDat aUsage

This SHALL be setto TPM_AUTH_NEVER

TCPA_KEY_USAGE | KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRI nf 0Si ze This SHALL be setto 0

TCPA_DIGEST pubDi gest This SHALL be the hash of the public key being
certified.

TCPA_NONCE Dat a This SHALL be set to antiReplay

TCPA_KEY_PARMS | info This specifies the type of key and its parameters.

BOOL

par ent PCRSt at us

This SHALL be set to FALSE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 127

5.7.2 TPM_ChangeAuthAsymFinish
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the
entity.

The command requires the cooperation of the owner of the parent of the entity, since authorization must
be provided to use that parent entity. The command requires knowledge of the existing authorization
information and passes the new authorization information. The newAuthLink parameter proves
knowledge of existing authorization information and new authorization information. The new authorization
information “encNewAut h” is encrypted wusing the “tempKey” variable obtained via
TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the authorization of a child, but is prevented from
knowing the new authorization data for that child.

The changeProof parameter provides a proof that the new authorization value was properly inserted into
the entity. The inclusion of a nonce from the TPM provides an entropy source in the case where the
authorization value may be in itself be a low entropy value (hash of a password etc).

End of informative comment.
Type

TCPA protected capability; caller must provide authorizations for the entity pointed to by parentRef and
blob.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description

| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish
4 4 TCPA_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data
5 4 TCPA_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key
6 2 3s 2 | TCPA_ENTITY_TYPE entityType The type of entity to be modified
7 1 20| s | 20 | TcPa HMAC newAuthLink \tl;\llllﬁg ::(;ag:(éttjrlgt:on that links the old and new authorization
8 4 5s 4 | UINT32 newAuthSize Size of encNewAuth
9 | <> | 6s | <> | BYTE[] encNewAuth New authorization data encrypted with ephemeral key.
10 | 4 7s 4 | UINT32 encDataSize The size of the inData parameter
11 | <> | 8 | <> | BYTE[] encData The encrypted entity that is to be modified.
12 | 4 TCPA_AUTHHANDLE authHandle Authorization for parent key.

211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
13 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
14 1 | 4m | 1 | BOOL continueAuthSession | The continue use flag for the authorization handle
15 | 20 TCPA_AUTHDATA privAuth Lﬁg‘ﬂ‘:yr'z;;r‘;?&gssggg'e’f;‘ttﬁ and parentHande.

Version 1l.1a

1 December 2001

TCPA Main Specification Page 128

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description

| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish
4 4 3s 4 | UINT32 outDataSize The used size of the output area for outData
5 | <] 45 | <> | BYTE[] outData The modified, encrypted entity.
6 | 20| 55 | 20 | TcPA NONCE saltNonce é\h’;cr’lgce‘:;‘r’;')‘]ﬂi;ﬁg‘ the TPM RNG to add entropy to the
7 | <>] 6s | <> | TCPA_DIGEST changeProof Proof that authorization data has changed.
8 | 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1 4y 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
10 | 20 TCPA_AUTHDATA resAuth mA"“C“Tg;Z;;%’;&gﬁ;g;gfu;ﬁwmed parameters.
Description

If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM Owner
authorization.

Actions

1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in parentHandle.

2. The encData field MUST be the encData field from TCPA_STORED_DATA or TCPA_KEY.

3. The TPM SHALL create el by decrypting the entity held in the encData parameter.

4., The TPM SHALL create al by decrypting encNewAuth using the authHandle ->
TPM_KEY_AUTHCHANGE private key. al is a structure of type TCPA_CHANGEAUTH_VALIDATE.

5. The TPM SHALL create bl by performing the following HMAC calculation: bl = HMAC (al ->
newAuthSecret). The secret for this calculation is encData -> currentAuth. This means that bl is a
value built from the current authorization value (encData -> currentAuth) and the new authorization
value (al -> newAuthSecret).

6. The TPM SHALL compare bl with newAuthLink. The TPM SHALL indicate a failure if the values do
not match.

7. The TPM SHALL replace el -> authData with al -> newAuthSecret

8. The TPM SHALL encrypt el using the appropriate functions for the entity type. The key to encrypt
with is parentHandle.

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG.

10. The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with al -> nl) using al ->
newAuthSecret as the HMAC secret.

11. The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the authorization

session.

Version 1.1a 1 December 2001

TCPA Main Specification Page 129

5.8 Authorization Data

The TPM MUST reserve 160 bits for the authorization data. The TPM treats the authorization data as a
blob. The TPM MUST keep the authorization data in a shielded location.

The TPM MUST enforce that the only usage in the TPM of the authorization data is to perform
authorizations.

Version 1.1a 1 December 2001

TCPA Main Specification Page 130

5.9 Nonces

The requestor SHOULD provide a unique value in the odd nonce field of the authorization structure for
each request. The TPM MAY enforce the uniqueness of values from the requestor.

The TPM MUST supply a new nonce value for each reply. The nonce value MUST come from the internal
RNG. The TPM MUST enforce the validity of the returning nonce another command uses the
authorization session.

Version 1.1a 1 December 2001

TCPA Main Specification Page 131

5.10 Authorization Handle

The TPM MUST support authorization handles. The TPM MUST support a minimum of two concurrent
authorization handles.

The TPM MUST support authorization-handle termination. The termination includes secure deletion of all
authorization session information.

Version 1.1a 1 December 2001

TCPA Main Specification Page 132

5.11 TPM Ownership

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control protocol.

Version 1.1a 1 December 2001

TCPA Main Specification

5.11.1 TPM_TakeOwnership

Type
TCPA protected capability; user must encrypt the values using the PUBEK.

Incoming Operands and Sizes

Page 133

PARAM HMAC -
Type Name Description

Sz # Sz

1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

9 4 UINT32 paramSize ;ogtal number of input bytes including paramSize and
3 4 1s 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2s 2 TCPA_PROTOCOL_ID protocollD The ownership protocol in use.

5 4 3s 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4s <> | BYTE[] encOwnerAuth The owner authorization data encrypted with PUBEK
7 4 5s 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 | 256 | 6s 256 | BYTE[] encSrkAuth The SRK authorization data encrypted with PUBEK

o [o | o e P | S e T o S
10 4 TCPA AUTHHANDLE authHandle The authorization handle used for this command

2w 20 | TcPA_NONCE authLastNonceEven iIf]\F/)tzr:Snonce previously generated by TPM to cover

11 | 20 | 3m | 20 | Tcra NONCE nonceOdd gﬁtﬁf_'ea%fj?eerated by system associated with

12 1 41 1 BOOL continueAuthSession | The continue use flag for the authorization handle

Authorization digest for input params. HMAC key: the
13| 20 TCPA_AUTHDATA ownerAuth new oyvnerAuth value. See actions for validation
operations

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| SZ # SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_TakeOwnership

oo s o [romer S T e ol SR

5 | 20] 21w | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

Version 1.1a 1 December 2001

TCPA Main Specification Page 134

6 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.
T TCPA_AUTHDATA resAuth HMAC key: the new ownerAuth value
Actions

The new owner MUST encrypt the Owner authorization data and the SRK authorization data using the
PUBEK. The endorsement key pair MUST be an RSA key so the encryption algorithm in use to encrypt
these secrets is RSA.

If the TPM has a current owner then the TPM upon receipt of this command SHALL return the error code
TCPA_OWNER_SET.

If the TPM has no current owner then the TPM upon receipt of this command SHALL:

1.
2.

10.
11.

12.
13.

If no EK is present the TPM MUST return TCPA_NO_ENDORSEMENT

If TCPA_PERSISTENT_FLAGS -> ownership is FALSE, the TPM SHALL abandon the process of
granting ownership and return the error TCPA_INSTALL_DISABLED

Verify that the authorization session is of type OI-AP.
Decrypt EncOwnerAuth using the PRIVEK to generate ProspectiveOwnerAuth.

Use the TCPA authorization protocol to verify that all input parameters tagged with AUTH have been
sent by an entity that knows ProspectiveOwnerAuth.

Store ProspectiveOwnerAuth as the Owner’s authorization data.

Generate a new SRK in accordance with the algorithm parameter. In version 1 of the specification,
algorithm MUST indicate a 2048 bit RSA key.

Verify that srkParams->keyUsage is TPM_KEY _STORAGE. If it is not, return
TCPA_BAD_PARAMETER"

Verify that srkParams->keyFlags->migratable is FALSE. If it is not, return TCPA_BAD_PARAMETER"
Decrypt EncSrkAuth using the PRIVEK and store the result as the SRK’s authorization data.

Obtain a TCPA _NONCE from the TPM's Random Number Generator and store it as
TCPA_PERSISTENT_DATA -> tpmProof. tpmProof SHALL be stored in TCPA shielded locations,
only.

Return the public part of the SRK to the caller.

Calculate an authenticated response using the new authorization data

Version 1.1a 1 December 2001

TCPA Main Specification Page 135

6. Integrity Collection and Reporting

6.1 Introduction

Version 1.1a 1 December 2001

TCPA Main Specification Page 136

6.2 Platform Configuration Registers

6.2.1 Format and Properties

A Platform Configuration Register (PCR) consists of a 160-bit field that holds a cumulatively updated
hash value and a 4-byte status field. The PCR data structure MUST be a TCPA-shielded location. PCRs
SHOULD be in volatile storage. The PCRs MUST be set to 0 before first use. This specification does not
mandate the internal storage format.

A TPM implementation MUST provide 16 or more independent PCRs. These PCRs are identified by index
and MUST be numbered from O (that is, PCR, through PCR;s are required for TCPA compliance).
Vendors MAY implement more registers for general-purpose use. Extra registers MUST be numbered
contiguously from 16 up to max — 1, where max is the maximum offered by the TPM.

The TCPA-protected capabilities that expose and modify the PCRs use a 32-bit index, indicating the
maximum usable PCR index. However, TCPA reserves register indices 2°° and higher for later versions of
the specification. A TPM implementation MUST NOT provide registers with indices greater than or equal
to 2. In this specification, the following terminology is used (although this internal format is not
mandated).

6.2.2 Initialization

PCRs and the protected capabilities that operate upon them MAY NOT be used until power-on self-test
(TPM POST) has completed. If TPM POST fails, the TPM_Extend operation will fail; and, of greater
importance, the TPM_Quote operation and TPM_Seal operations that respectively report and examine
the PCR contents MUST fail. At the successful completion of TPM POST, all PCRs MUST be set to 0.
Additionally, the UINT32 flags MUST be set to zero.

6.2.3 Authorized PCRs

A TPM MUST provide one Data Integrity Register (DIR). Implementations MAY provide more. These
registers MUST hold 160-bit values and MUST be held in TCPA-shielded locations. Further, these
registers MUST be non-volatile (values are maintained during the power-off state). A TPM implementation
need not provide the same number of DIRs as PCRs.

Version 1.1a 1 December 2001

TCPA Main Specification Page 137

6.3 Operations Supporting Integrity Collection and Reporting

6.3.1 TPM_Extend

Type
TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| Sz # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Extend.
4 4 TCPA_PCRINDEX pcrNum The PCR to be updated.
5120 TCPA_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description

| SZ| # | SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 120 TCPA_PCRVALUE outDigest The PCR value after execution of the command.

Descriptions

TPM_Extend, TPM_SHA1CompleteExtend and TPM_Startup SHALL be the only commands that alter the
value of any PCRs.

When TCPA_PERSISTENT_FLAG -> disable is TRUE, TPM_Extend SHALL update the target PCR but
return zero instead of the new value of the PCR.

Actions

1. Create cl by concatenating (PCRj,qex TCPA_PCRVALUE || inDigest). This takes the current PCR
value and concatenates the inDigest parameter.

2. Create hl by performing a SHA1 digest of c1.
Store hl as the new TCPA_PCRVALUE of PCRjpgex
4. If TCPA_PERSISTENT_FLAG ->disable is TRUE
a. Set outDigest to 20 bytes of 0x00
5. Else
a. SetoutDigestto hl

Version 1.1a 1 December 2001

TCPA Main Specification Page 138

6.3.2 TPM_PcrRead

Start of informative comment:

The TPM_PcrRead operation provides non-cryptographic reporting of the contents of a named PCR.
End of informative comment.

Type

TCPA protected capability

Incoming Operands and Sizes

PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_PcrRead.
4 4 TCPA_PCRINDEX perindex Index of the PCR to be read

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description

SZ | # SZ

1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 120 TCPA_PCRVALUE outDigest The current contents of the named PCR
Actions

The TPM_PcrRead operation returns the current contents of the named register to the caller.

Version 1.1a 1 December 2001

TCPA Main Specification Page 139

6.3.3 TPM_Quote
Start of informative comment:

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is required for
operation. TPM_Quote uses a key to sign a statement that names the current value of a chosen PCR and
externally supplied data (which may be a nonce supplied by a Challenger).

The term "ExternalData" is used because an important use of TPM_Quote is to provide a digital signature
on arbitrary data, where the signature includes the PCR values of the platform at time of signing. Hence
the "ExternalData" is not just for anti-replay purposes, although it is (of course) used for that purpose in
an integrity challenge.

End of informative comment.

Type
TCPA protected capability; user must provide authorization to use the key indicated by the keyl

parameter.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ) # SZ

1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Quote.

4 4 TCPA_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the

PCR values.
5 | 20| 25 | 20 | TcPa NoNCE extrnalData 160 b|ts of externally supplied data (typically a nonce
provided by a server to prevent replay-attacks)
6 | <>] 3s | <> | TCPA_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.
7 4 TCPA AUTHHANDLE authHandle The agtholnzatlon handle used for keyHandle
- authorization.
211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs

8 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle

10 | 20 TCPA AUTHDATA privAuth The. authorization digest for inputs and keyHandle. HMAC

- key: key -> usageAuth.

Outgoing Operands and Sizes

PARAM HMAC o

Type Name Description

| SZ) # Sz

1 2 TCPA_TAG tag TPM_TAG_RSP_AUT1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Quote.

Version 1.1a 1 December 2001

TCPAM

ain Specification Page 140

4 | o | 3 < | TcPa_pcr composiTE perData A structure contalnlr]g the same indices as targetPCR,
plus the corresponding current PCR values.

5 4 4s 4 | UINT32 sigSize The used size of the output area for the signature

6 [< | 5 | <> | BYTE[] sig The signed data blob.

7 120] 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.

9 |20 TCPA_AUTHDATA resAuth HMAC key: Key -> UsageAuth,

Actions

The TPM MUST validate the authorization to use the key pointed to by keyHandle.

The TPM MUST check that the targetPCR parameter is a consistent TCPA_PCR_SELECTION structure
and that the targetPCR.pcrSelect parameter is non-zero. If targetPCR is incorrect or targetPCR.pcrSelect
is zero, the TPM MUST return the error code TCPA_NO_PCR_INFO.

If targetPCR is valid and the targetPCR.pcrSelect parameter value is non-zero, the TPM_Quote

operatio
1.

Version

n SHALL:

Assemble a TCPA PCR_COMPOSITE data structure in a TPM-shielded location. The PCR
indices in the TCPA_PCR_COMPOSITE structure SHALL be the same as those in the targetPCR
parameter. This TCPA_PCR_COMPOSITE data structure SHALL be returned by the call.

Create a TCPA _COMPOSITE_HASH structure as described in section using the
TCPA_PCR_COMPOSITE structure as an input.

Incorporate the TCPA COMPOSITE_HASH, information about the type of operation
(TPM_QUOTE), version information, and the ExternalData parameter into a
TCPA_QUOTE_INFO structure.

Sign the TCPA_QUOTE_INFO structure, using keyHandle as the signature key.

Return the resulting signature value in parameter sig.

1.1a 1 December 2001

TCPA Main Specification Page 141

6.3.4 TPM_DirWriteAuth
Start of informative comment:

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs are non-
volatile memory registers held in a TCPA-shielded location. Owner authentication is required to authorize
this action. Version 1 requires only one DIR. If the DIR named does not exist, the TPM_DirRead

operation returns TCPA_BADINDEX.

End of informative comment.

Type

TCPA protected capability; the user must provide authorization from the TPM Owner to execute function.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_DirWriteAuth.
4 4 2s 4 | TCPA_DIRINDEX dirlndex Index of the DIR
51201 3s 20 | TCPA_DIRVALUE newContents New value to be stored in named DIR
6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for command.
2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
7 120 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
8 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
9 | 20 TCPA_AUTHDATA ownerAuth Z\t]vi Gz}atruAtE:)hrlization digest for inputs. HMAC key:
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_DirWriteAuth
4 |1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
6 | 20 TCPA_AUTHDATA resAuth Lr,{/eer%JtEg:iz;x(szr(XSg}s.t for the returned parameters.

Version 1.1a 1 December 2001

TCPA Main Specification Page 142

Actions

1. Validate that authHandle contains a TPM Owner authorization to excute the TPM_DirWriteAuth
command

2. Validate that dirindex points to a valid DIR on this TPM
3. Write newContents into the DIR pointed to by dirindex

Version 1.1a 1 December 2001

TCPA Main Specification Page 143

6.3.5 TPM_DirRead
Start of informative comment:

The TPM_DirRead operation provides read access to the DIRs. No authentication is required to perform
this action because typically no cryptographically useful authorization data is available early in boot. TSS
implementors may choose to provide other means of authorizing this action. Version 1 requires only one
DIR. If the DIR named does not exist, the TPM_DirRead operation returns TCPA_BADINDEX.

End of informative comment.
Type
TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_DirRead.
4 4 TCPA_DIRINDEX dirindex Index of the DIR to be read

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 |20 TCPA DIRVALUE dirContents The current contents of the named DIR
Actions

1. Validate that dirindex points to a valid DIR on this TPM

2. Return the contents of the DIR in dirContents

Version 1.1a 1 December 2001

TCPA Main Specification Page 144

7. Protected Storage

Start of informative comment:

This section introduces the processes by which a TPM may act as the portal to confidential data stored
on arbitrary storage media.

A TPM is required to protect the keys that represent TPM identities, and keys that are released only when
the computing environment of the associated platform has a particular state. Given this capability, it is a
natural extension to enable a TPM to protect arbitrary data and arbitrary keys. Unfortunately, this
approach requires a potentially unbounded amount of storage within a TPM. The TCPA specification
therefore includes capabilities that enable a TPM to act as a portal to potentially unbounded amounts of
confidential data outside the TPM.

Storing data outside the TPM has the additional advantages of enabling easier migration of confidential
data from one platform to another and enabling recovery of confidential data in the event of platform
failure. These protected-storage capabilities are designed to enable the TPM to operate as a slave device
so as to avoid the cost complexity associated with a master device in a computing platform. These
capabilities also are designed to avoid the need for the TPM to manage the confidential data that is
stored outside the TPM. These design goals impose constraints on the nature of the protected-storage
capabilities.

The TCPA solution uses the TPM to generate “blobs” of secret data. Unspecified capabilities outside the
Subsystem manage protected storage and issue certificates or other indications about the purpose and
usefulness of data/keys held in blobs. Those unspecified capabilities issue commands to the TPM that
cause it to create blobs of data and to use and return the contents of such blobs. This unspecified
functionality is the manager of protected storage and uses the TPM as a specialized co-processor. The
protected-storage commands are chosen to prevent subversion of the data in protected storage. Hence a
rogue management function can disrupt protected storage but cannot subvert it.

A stored secret could be any of the following:

» Arbitrary data or a key. If a secret is arbitrary data, it can be exported from the TPM, and the TPM wiill
not perform operations using that data. If the secret is a key, it is available for use within the TPM,
and will never be exported from the TPM.

* An encryption (storage) key or a signing key. If a key is for encryption, it must not be used for signing,
and visa versa. Encryption keys are used only to provide confidentiality for blobs. Signature keys are
used for signing arbitrary data submitted by the entity authorized to use that key.

e The signature key of a TPM identity. Such a signature key will be used only for special signing
operations.

A stored secret has the following attributes:

* It may be capable of migration to another platform or it may be non-migratable. Keys that are
migratable cannot be considered unique to a particular platform. Non-migratable keys can be
considered to be unique to a particular platform.

* It may be generated inside the TPM or externally loaded. Externally loaded keys cannot be stored as
non-migratable keys, for obvious reasons.

* It may be bound to the TPM or bound to a sequence of integrity metrics. At times, data or a key is
required to be bound to a particular platform. At other times, it is required to be bound to a particular
computing environment within a platform.

* It may have access control. A secret may be open to all processes on a platform or it may not, with
varying degrees of control in between.

Some of these attributes are partitioned as separate commands, while others are partitioned as flags
within commands. All the commands cause the TPM to create a secret blob and return it to the caller. The
inverse commands cause the TPM to import a blob. Sometimes the TPM will then return the contents of

Version 1.1a 1 December 2001

TCPA Main Specification Page 145

the blob (data) to the caller, and sometimes the TPM loads the contents of the blob (a key) for use within
the TPM.

In all cases, the TPM must already contain the key that will be used to either encrypt or decrypt the blob.
This naturally leads to a tree of blobs, where intermediate nodes contain encryption (storage) keys that
are used to encrypt/decrypt child nodes. The root of the tree is the “Storage Root Key”’ (SRK) which is
generated inside the TPM and is non-migratable. Only leaf nodes can contain signing keys, because a
TPM will refuse to use a signing key to encrypt/decrypt child nodes. A TPM also will refuse to use a
migratable node as the parent of a non-migratable node. (This enables migration of the supposedly non-
migratable node.) On the other hand, a non-migratable node could be the parent of a migratable node,
with no ill effects.

The commands executed by the TPM are as follows:

e« TSS Bind: External data is encrypted under a parent key. (TPM_UnBind decrypts the blob using the
parent key and exports the data from the TPM.)

« TPM_Seal: External data is concatenated with a value of integrity metric sequence and encrypted
under a parent key. (TPM_Unseal decrypts the blob using the parent key and exports the plaintext
data if the current integrity metric sequence inside the TPM matches the value of integrity metric
sequence inside the blob). The sealer of the data may specify that no integrity metrics are required.

e TSS WrapKey: An externally generated key is encrypted under a parent key. (TPM_LoadKey
decrypts the target blob using the parent key and loads the target key inside the TPM, for use by the
TPM.)

« TSS WrapKeyToPcr: An externally generated key is concatenated with a value of integrity metric
sequence and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using the
parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity metric
sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

e TPM_CreateWrapKey: A key is generated inside the TPM, concatenated with a value of integrity
metric sequence, and encrypted under a parent key. (TPM_LoadKey decrypts the target blob using
the parent key and loads the target key inside the TPM, for use by the TPM, if the current integrity
metric sequence inside the TPM matches the value of integrity metric sequence inside the blob.)

When a blob is loaded into a TPM, the TPM distinguishes between a data-bearing blob and a key-bearing
blob by inspecting the data structure inside the blob. Data-bearing blobs are constructed according to
PKCS #1. Key-bearing blobs are constructed using a TCPA-defined format. Each blob containing a key
includes the field KeyUsage, which indicates whether the key is to be used for encryption (storage) or
signing.

Command Usage with keys Comment

TSS Bind N/A No key
TPM_Seal N/A No key

TSS WrapKey Migratable, encrypt or sign Externally loaded
TSS WrapKeyToPcr Migratable, encrypt or sign Externally loaded
TPM_CreateWrapKey Any

TCPA-protected storage uses asymmetric cryptography exclusively. One reason is that asymmetric
crypto is already required to support TPM identities, but asymmetric crypto is not specifically necessary
for any function. Another reason is that (in many, but not all, cases) operations to construct blobs can be
performed outside the TPM; only the recovery of information from blobs (using the private key) must be
done inside a TPM. This is possible because it is frequently true that all the necessary data to construct a
blob (including the public key) is available outside the TPM. One notable exception is the TPM_Seal
command, which must be performed inside a TPM because it requires reliable access to the Platform
Configuration Registers and/or TMPProof. Using asymmetric crypto for protected storage therefore
reduces the complexity of a TPM.

Version 1.1a 1 December 2001

TCPA Main Specification Page 146

Some other important characteristics of “protected storage” are
 Whenever a blob is created, the TPM includes random data to guard against plaintext attacks.

* Whenever a CreateWrapKey command creates a new key within the TPM, the blob that is produced
contains the private (signature) key and the TPM also exports the corresponding public (identity) key
as plaintext.

« Whenever a WrapXX command loads a new key into the TPM, only the private key (and its RSA
modulus) must be presented.

e« Whenever the TPM_LoadKey command is asserted, the TPM imports a secret blob containing the
private (signature) key and the TPM also imports the corresponding public (identity) key as plaintext.
Active RSA keys inside the TPM are referenced by handle where loaded into the TPM. To minimize
key management burden inside the TPM, it is assumed “key slot” management is performed outside
the TPM.

e The integrity of the data from the TPM_UnBind command is not checked by the TPM. Hence
applications should use an “out of band” mechanism for verifying data integrity, if such verification is
necessary.

Each secret blob contains a field of 20 bytes that may be used for authorization data. For convenience,
the authorization field is the same size as the output of the SHA-1 hash algorithm. The authorization field
is merely stored inside a blob, and the protected-storage capabilities do not themselves interpret the field.

The authDataUsage field determines when authorization is required.

The integrity of data or keys recovered from blobs is ensured by an implicit, rather than explicit,
mechanism. Ordinarily, an integrity check is provided by appending a checksum to original plaintext data.
After decryption, the checksum is recomputed and compared with the checksum in the recovered data.
Such a checksum needs to be at least 16 bytes long so as to have the necessary statistical properties. In
the case of recovered blobs, the first 20 bytes of authorization data are sufficient to determine with high
probability that data has been successfully decrypted without error. If the decryption fails, or the
encrypted data contains errors, it is unlikely that the authorization data in the recovered blob will match
the submitted authorization data.

The TPM also can be commanded to provide evidence that a particular public key is associated with a
non-migratable private key (which was generated by the TPM and has never been released outside the
TPM). This is the TPM_CertifyKey. It enables a third party to use a public key to encrypt data that can be
recovered only using a protected-storage command. It also enables a third party to have confidence that
a signature key has been generated by the TPM and has never been released outside the TPM.

Migratory data may be copied to an arbitrary number of platforms, using the “migration” commands
provided. Non-migratory data may be moved to another platform only with the cooperation of a third party
(the manufacturer of the platform, or his representative), using the “maintenance” commands provided.

End of informative comment.

7.1 Introduction

7.1.1 Characteristics
Start of informative comment:

This section specifies how to use the TPM to provide secure storage for an unlimited number of private
keys or other data. Basically, this is done through the RSA key technology built into the TPM to encrypt
data and keys with a public key to which the TPM has access to its corresponding private key. The
resulting encrypted file, which contains header information in addition to the data or key, is called a blob,
and cannot be any bigger than key size used to encrypt it. The specification also shows how this is done,
so that private keys generated on the TPM can be stored outside the TPM (encrypted) in a way that
allows the TPM to use them later without ever exposing such keys in the clear outside the TPM.

Version 1.1a 1 December 2001

TCPA Main Specification Page 147

Padding and speed requirements make the TPM a very inefficient and inappropriate vehicle to do any
bulk encryption, but it can be used to securely store keys that would then be used by software to do bulk
encryption. There are a number of usage modules that imply requirements on the function of the TPM, as
follows:

Signing with a private key by the TPM can be accomplished only by presentation of authorization data
to the TPM that is associated with that private key. A private key generated by a third party can be
linked to a specific TPM without exposing the private key to the Owner/User of the TPM, but only with
the consent of the User of the TPM.

It MUST be possible to prove a specific public key is associated with a private key known only to a
TPM. It must be possible for the Owner of a key, with the cooperation of the Owner of the TPM to
migrate a migratable key from one platform to another without giving up control of the key to the TPM
Owner.

It must not be possible for the Owner of a key, even with the cooperation of the Owner of the TPM to
migrate a non-migratable key from one platform to another. Since a key may be wrapped outside the
TPM, it is necessary that non-migratable keys always be generated inside the TPM. It must not be
possible for the Owner of a non-migratable asymmetric key, even with cooperation of the Owner of
the TPM, to decrypt the contents of an encrypted bundle encrypted with that non-migratable
asymmetric key.

If a TPM is compromised, it must not compromise all TPMs.

To facilitate application level exchange of symmetric keys, the symmetric keys are stored using
PKCS#1.

All this is generally accomplished as follows:

Any data in protected storage is explicitly identified as migratable or non-migratable.

Each TPM contains a SRK, generated by the TPM at the request of the Owner. Under that SRK are
two trees: one dealing with migratable data and the other dealing with non-migratable data.

The non-migratable tree is directly below the SRK. The migration tree is directly below a “migration
root” key that is directly below the SRK. Each node in a tree provides confidentiality for the nodes
immediately below it. Obviously, all intermediate nodes in the trees must be encryption keys. Nodes
in the non-migratable tree must be generated by the TPM; otherwise, non-migratable nodes could be
exposed.

Finally, some observations:

In the migration tree, only leaf nodes should be available for signing. This is because a signature
node (used outside the TPM for signing) should never be used for encryption and hence cannot be
used to encrypt other nodes. Hence, it must be a leaf.

Similarly, in a non-migration tree, only leaf-nodes should be available for signing. Since non-
migratable nodes must not be migrated, they must never appear outside the TPM after being installed
in the TPM.

Any non-leaf node in the non-migratable tree must be generated within the TPM and never exposed
outside the TPM. Any key (and hence every non-migratable key) generated in a TPM must be a
genuine key.

Any migratable key can be migrated by anyone that owns any of its migratable ancestors. As a
result, in order to be sure that a migratable key cannot be migrated by anyone but the owner of that
key, the owner can always create the migratable key and store it with a non-migratable storage key,
thus guaranteeing the user has unique authority to authorize migration of that key.

End of informative comment.

Version 1.1a 1 December 2001

TCPA Main Specification Page 148

7.1.2 Key Storage

The number of asymmetric keys that are storable via a TPM SHOULD be limited only by the volume of
storage available to the platform.

The TPM SHALL ensure that the TCPA_PERSISTENT_FLAGS -> tmpProof field is only included on TPM
internally generated non-migratable keys. The rationale is that the tmpProof field is confidential
information and exposure of this information would lower the security of the system.

Version 1.1a 1 December 2001

TCPA Main Specification Page 149

7.2 Mandatory Functions

Version 1.1a 1 December 2001

TCPA Main Specification Page 150

7.2.1 TPM_Seal
Start of informative comment:

The SEAL operation allows software to explicitly state the future “trusted” configuration that the platform
must be in for the secret to be revealed. The SEAL operation also implicitly includes the relevant platform
configuration (PCR-values) when the SEAL operation was performed. The SEAL operation uses the
tpmProof value to BIND the blob to an individual TPM.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect when the SEAL
operation was performed is returned to the caller, as well as the secret data. This proof may, or may not,
be of interest. If the SEALed secret is used to authenticate the platform to a third party, a caller is
normally unconcerned about the state of the platform when the secret was SEALed, and the proof may be
of no interest. On the other hand, if the SEALed secret is used to authenticate a third party to the
platform, a caller is normally concerned about the state of the platform when the secret was SEALed.
Then the proof is of interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to prove that the
platform is a particular platform that is in a particular configuration), the only requirement is that that key
can be used only when the platform is in that future configuration. Then there is no interest in the platform
configuration when the secret key was SEALed. An example of this case is when SEAL is used to store a
network authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log on to the
platform. The OS uses a SEALED blob to store the encryption key for the user-database. However, the
nature of SEAL is that any SW stack can SEAL a blob for any other software stack. Hence the OS can
be attacked by a second OS replacing both the SEALED-blob encryption key, and the user database
itself, allowing untrusted parties access to the services of the OS. To thwart such attacks, SEALED blobs
include the past SW configuration. Hence, if the OS is concerned about such attacks, it may check to see
whether the past configuration is one that is known to be trusted.

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity with other
commands that require the encryption of more than one parameter, the string used for XOR encryption is
generated by concatenating a nonce (created during the OSAP session) with the session shared secret
and then hashing the result.

End of informative comment.
Type
TPM function; user must provide authorization to use the key pointed to by keyHandle.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

5 4 UINT32 paramSize ;ogtal number of input bytes including paramSize and

3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Seal.

4 4 TCPA KEY HANDLE keyHandle Handle_z of a loaded key that can perform seal

- = operations.

The encrypted authorization data for the sealed data.

51201 2 20 | TCPA_ENCAUTH encAuth The encryption key is the shared secret from the OS-
AP protocol.

6 4 3 4 | unTa2 perinfoSize The S|ze_0f the_pcrlnfo parameter. If 0 there are no
PCR registers in use

Version 1.1a 1 December 2001

TCPA Main Specification

Page 151

7 | <> 4s | <> | TCPA_PCR_INFO pcrinfo The PCR selection information
8 4 5s 4 | UINT32 inDataSize The size of the inData parameter
9 | < | 6s | | syrE] inData The data to be sealed to the platform and any specified
PCRs
The authorization handle used for keyHandle
10| 4 TCPA_AUTHHANDLE authHandle authorization. Must be an OS_AP session for this
command.
2u | 20 | Tcea NoncE authLastNonceEven iIfl\lgzrtlsnonce previously generated by TPM to cover
11 | 20 | 31 | 20 | TcPa_NONCE nonceOdd Nonce generated by system associated with
authHandle
12 | 1 | 4w | 1 | BOOL continueAuthSession | Ignored
The authorization digest for inputs and keyHandle.
13 | 20 TCPA_AUTHDATA pubAuth HMAC key: key.usageAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
|Sz) # | sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Seal.
4 | <o | 3 4 | TCPA STORED DATA sealedData Encrypted, |ntegr|ty-pr0t§cted data object that is the result
- - of the TPM_Seal operation.
5 120] 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3Ht | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1) 4m | 1] BOOL continueAuthSession | Continue use flag, fixed value of FALSE
7 1 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.

HMAC key: key.usageAuth.

Descriptions

The string used for XOR encryption of the command variable named encAuth SHALL be the digest
created by concatenating the shared session secret with the even numbered hash (generated by the

TPM) and hashing the concatenated value.

TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

Actions

1. If the inDataSize is 0 the TPM returns TCPA_BAD_PARAMETER

2. If the keyUsage field of

the key

indicated by

keyHandle does not have the value

TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE.

3. If the keyHandle points to a migratable key then the TPM MUST return the error code
TCPA_INVALID_KEY_USAGE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 152

4. The TPM_Seal command MUST fill in a TPM_STORED_DATA structure. This structure includes a
properly filled in and encrypted TCPA SEALED DATA structure. The encryption key for the
operation is the key pointed to by the keyHandle parameter.

5. The TPM MUST set the TPM_STORED_DATA -> ver to the current TPM version.

Create an XOR-string by concatenating the shared session secret with the even numbered hash
(generated by the TPM) and hashing the concatenated value. Generate the plaintext authorization
data for the sealed data by XORing the XOR-string with the variable encAuth.

7. Set continueAuthSession to FALSE.

8. If the datais wrapped to PCR’s then

9. Else

a.

a.

The TPM MUST check that the pcrinffo parameter is a consistent
TCPA_PCR_SELECTION structure. If not, the TPM MUST return the error code
TCPA_BADINDEX.

The TPM MUST compute al by creating TCPA_COMPOSITE_HASH value using pcrinfo
-> perSelection as the input to the algorithm in J0.4.5.]

The TPM MUST set TPM_STORED_DATA -> seallnfo -> digestAtRelease to pcrinfo ->
digestAtRelease.

The TPM MUST set TPM_STORED_DATA -> Sealinfo -> digestAtCreation to al

The TPM MUST set TPM_STORED DATA -> seallnfoSize to the size of the
TCPA_PCR_INFO structure.

The TPM MUST set TPM_STORED_DATA -> seallnfoSize to 0.

10. The TPM provides no validation of the authorization data. Well known values like nulls are possible
and allowed.

11. The TPM must ensure that the PAYLOAD_TYPE byte of any sealed data is set to the proper value to
ensure that all encrypted elements can be distinguished from each other.

Version 1.1a 1 December 2001

TCPA Main Specification Page 153

7.2.2 TPM_Unseal
Start of informative comment:

The TPM_Unseal operation will reveal TPM_Sealed data only if it was encrypted on this platform and the
current configuration (as defined by the named PCR contents) is the one named as qualified to decrypt it.
Internally, TPM_Unseal accepts a data blob generated by a TPM_Seal operation. TPM_Unseal decrypts
the structure internally, checks the integrity of the resulting data, and checks that the PCR named has the
value named during TPM_Seal. Additionally, the caller must supply appropriate authorization data for
blob and for the key that was used to seal that data.

If the integrity, platform configuration and authorization checks succeed, the sealed data is returned to the
caller; otherwise, an error is generated.

End of informative comment.
Type

TPM protected capability; the user must provide authorizations to use the parent key pointed to by
parentHandle.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description

| SZ) # SZ

1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

5 4 UINT32 paramsize ;(;tal number of input bytes including paramSize and

3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 | <>] 2s | <> | TCPA_STORED DATA inData The encrypted data generated by TPM_Seal.

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for parentHandle.

2w | 20 | Tcea NoncE authLastNonceEven iIf]\F/)tzr:Snonce previously generated by TPM to cover

7 1 20 | 3m | 20 | TcPa NONCE nonceOdd Nonce generated by system associated with
authHandle

8 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
The authorization digest for inputs and parentHandle.

9 | 20 TCPA_AUTHDATA parentAuth HMAC key: parentKey.usageAuth,

10 | 4 TCPA_AUTHHANDLE dataAuthHandle The authorization handle used to authorize inData.

212 | 20 | TCPA_NONCE datalastNonceEven Even nonce previously generated by TPM

Nonce generated by system associated with

11 [20 | 3n2 | 20 | TCPA_NONCE datanonceOdd entityAuthHandle

12 1 | 42| 1 | BOOL continueDataSession | Continue usage flag for dataAuthHandle.

13 | 20 TCPA_AUTHDATA dataAuth The authorization digest for the encrypted entity. HMAC

key: entity.usageAuth.

Version 1.1a 1 December 2001

TCPA Main Specification Page 154

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description

| SZ # SZ

1| 2 TCPA TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramsize tTac(;tal number of output bytes including paramSize and

3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 3s 4 | UINT32 sealedDataSize The used size of the output area for secret

5 | <] 4s | <> | BYTE[] secret Decrypted data that had been sealed

6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4y 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

The authorization digest for the returned parameters.
8 20 TCPA_AUTHDATA resAuth HMAC key: parentKey.usageAuth.
9 | 20 | 242 | 20 | TCPA_NONCE dataNonceEven Even nonce newly generated by TPM.
Nonce generated by system associated with
312 | 20 | TCPA_NONCE datanonceOdd dataAuthHandle
10| 1 |42 | 1 | BOOL continueDataSession | Continue use flag, TRUE if handle is still active
The authorization digest used for the dataAuth session.

11 | 20 TCPA_AUTHDATA dataAuth HMAC key: entity.usageAuth.

Actions

1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle. On failure
the TPM MUST return TCPA_AUTHFAIL.

2. If the keyUsage field of the key indicated by parentHandle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE.

3. The TPM MUST check that the TCPA_KEY_FLAGS -> Migratable flag has the value FALSE in the
key indicated by parentKkeyHandle. If not, the TPM MUST return the error code
TCPA_BAD_PARAMETER.

4. The TPM MUST create d1 by decrypting inData using the key pointed to by parentHandle. inData is a
TCPA_STORED_DATA structure and the encrypted area is pointed to by inData -> encData.

5. The TPM MUST check the integrity of the d1. The integrity check establishes that the dl is a

consistent TPM_SEALED_ DATA structure created with by a TPM_Seal operation on the same TPM
that is attempting the TPM_Unseal and that d1 has not been modified.

a. The TPM MUST check that the d1 -> tpmProof matches TCPA_PERSISTENT_DATA ->
tpmProof.

b. The TPM MUST calculate hl by performing the same calculation that creates
TPM_SEALED_ DATA -> storedDigest.

c. The TPM MUST validate that hl and d1 -> storedDigest match.

d. The TPM MUST check the TCPA_PAYLOAD_TYPE value and ensure that it is not
decrypting a key.

Version 1.1a 1 December 2001

TCPA Main Specification Page 155

e. If dl1 fails the integrity checks, then the operation MUST return the error
TCPA_NOTSEALED_BLOB.

6. The TPM must validate the authorization to use d1. The TPM MUST validate the authorization in
dataAuth matches the d1 -> authData parameter. The TPM MUST return TCPA_AUTHFAIL on a
mismatch.

7. IfinDatais wrapped to PCR’s then,

a. The TPM MUST ensure that the PCRs to which the blob was sealed are the same as the
PCRs’ values that exist at the time of TPM_Unseal.

b. The TPM MUST validate that inData -> pcrinfo is a valid TCPA_INFO_STRUCTURE.

c. The TPM will create hl by computing a composite hash using the inData -> pcrinfo
parameter as the input to the composite hashing algorithm (See

d. The TPM MUST compare hl with inData -> pcrinfo -> digestAtRelease. On a mismatch
the TPM MUST return TCPA_ WRONGPCRVALUE.

8. else

a. The TPM does not need to check PCR configuration.

Version 1.1a 1 December 2001

TCPA Main Specification Page 156

7.2.3 TSS_Bind

Version 1.1a 1 December 2001

TCPA Main Specification Page 157

7.2.4 TPM_UnBind
Start of informative comment:

TPM_UnBind takes the data blob that is the result of a TSS_Bind command and decrypts it for export to
the User. The caller must authorize the use of the key that will decrypt the incoming blob.

UnBInd operates on a block-by-block basis, and has no notion of any relation between one block and
another.

End of informative comment.
Type

TCPA protected capability; the user must provide authorization to use the key specified in the keyHandle
parameter.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description

| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_UnBind.
4 4 TCPA_KEY_HANDLE keyHandle ngﬁﬁyzgggﬁggghﬁﬁerofaloadedkeythatcanpeﬁonn
5 4 2s 4 | UINT32 inDataSize The size of the input blob
6 | <> 3 | <> | BYTE[] inData Encrypted blob to be decrypted
7 4 TCPA_AUTHHANDLE authHandle The handle used for keyHandle authorization

2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
8 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1]4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
NE e e sarces e o nd

Version 1.1a 1 December 2001

TCPA Main Specification

Outgoing Operands and Sizes

Page 158

PARAM HMAC
Type Name Description
| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_UnBind
4 4 3s 4 | UINT32 outDataSize The length of the returned decrypted data
5 | <] 45 | <> | BYTE[] outData The resulting decrypted data.
6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1 4y 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
s | 20 TCPA_AUTHDATA resAuth Lr,::A%JtEg;zizgmgggitufg. the returned parameters.
Description

UnBind SHALL operate on a single block only.

Actions
The TPM SHALL perform the following:
If the inDataSize is 0 the TPM returns TCPA_BAD_PARAMETER

Validate the authorization to use the key pointed to by keyHandle

1.
2.
3.

6.

If the keyUsage field of the key referenced by keyHandle does not have the value TPM_KEY_BIND
or TPM_KEY_LEGACY, the TPM must return the error code TCPA_INVALID_KEYUSAGE

Decrypt the inData using the key pointed to by keyHandle

if (keyHandle -> encScheme does not equal TCPA_ES_RSAESOAEP_SHAl1l MGF1) and
(keyHandle -> keyUsage equals TPM_KEY_LEGACY),

else

a.

The payload does not have TCPA specific markers to validate, so no consistency check
can be performed.

Set the output parameter outData to the value of the decrypted value of inData. (Padding
associated with the encryption wrapping of inData SHALL NOT be returned.)

Set the output parameter outDataSize to the size of outData, as deduced from the
decryption process.

Return the output parameters.

Interpret the decrypted data under the assumption that it is a TCPA_BOUND_DATA
structure, and validate that the payload type is TCPA_PT_BIND

Set the output parameter outData to the value of TCPA_BOUND_DATA -> payloadData.
(Other parameters of TCPA_BOUND_DATA SHALL NOT be returned. Padding
associated with the encryption wrapping of inData SHALL NOT be returned.)

Set the output parameter outDataSize to the size of outData, as deduced from the
decryption process and the interpretation of TCPA_BOUND_DATA.

Version 1.1a 1 December 2001

TCPA Main Specification Page 159

d. Return the output parameters.

Version 1.1a 1 December 2001

TCPA Main Specification

7.2.5 TPM_CreateWrapKey

Start of informative comment:

Page 160

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for asymmetric
keys.

The newly created key can be locked to a specific PCR value by specifying a set of PCR registers.

End of informative comment.

Type
TCPA protected capability; the user must provide authorization to use the key indicated by parentHandle.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

9 4 UINT32 paramSize ;(;tal number of input bytes including paramSize and

3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 120] 2s | 20 | TCPA_ENCAUTH dataUsageAuth Encrypted usage authorization data for the sealed data

6 | 20| 3s | 20 | TcPa EncAUTH dataMigrationAuth Egtc;ypted migration authorization data for the sealed

7 | < | 4 | < | TcPa kev keylnfo Information about key to be created, pubkey.keyLength
and keylnfo.encData elements are 0.
The authorization handle used for parent key

8 4 TCPA_AUTHHANDLE authHandle authorization. Must be an OS_AP session.

21 | 20 | TCPA_NONCE authLastNonceEven iIi\gzrtlsnonce previously generated by TPM to cover

9 | 20| 3m | 20 | TcPa NONCE nonceOdd Nonce generated by system associated with
authHandle

10 | 1 | 4w | 1 | BOOL continueAuthSession | Ignored
The authorization digest that authorizes the use of the

11 1 20 TCPA_AUTHDATA pubAuth public key in parentHandle. HMAC key:
parentKey.usageAuth.

Version 1.1a 1 December 2001

TCPA Main Specification Page 161

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description

| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_CreateWrapKey
4 | o | as | o | Tcrakey wrappedKey er:cer;ésﬁaﬁ\llza\t(estkr:;ture which includes the public and
5 120] 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1) 4m | 1] BOOL continueAuthSession | Continue use flag, fixed at FALSE
3E et o e el

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller combines
the two nonces in use by the OSAP session with the session shared secret.

DataUsageAuth is XOR'd with the SHA-1 hash of the concatenation of the OSAP session shared secret
with the even numbered nonce generated by the TPM (authLastNonceEven). MigrationAuth is XOR'd with
the SHA-1 hash of the concatenation of the OSAP session shared secret with the odd numbered nonce
generated by the caller (nonceOdd).

Actions
The TPM SHALL do the following:

1.

Validate the authorization to use the key pointed to by parentHandle. Return TCPA_AUTHFAIL on
any error.

Validate the session type for parentHandle is OS-AP.
Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

If parentHandle -> keyFlag -> migratable is TRUE and keyinfo -> keyFlag -> migratable is FALSE
then return TCPA_INVALID_KEYUSAGE

Validate key parameters

a. keylnfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or
TPM_KEY_AUTHCHANGE. If it is, return TCPA_BAD_PARAMETER.

b. If keyInfo -> keyUsage equals TPM_KEY_STORAGE
i. algorithmlD MUST be TCPA_ALG_RSA
ii. encScheme MUST be TCPA_ES_RSAESOAEP_SHA1l MGF1
iii. sigScheme MUST be TCPA_SS_NONE
iv. key size MUST be 2048
Validate all keylnfo parameters, any errors return TCPA_BAD_PARAMETER

Create the two XOR patterns by using the session key and the nonces for this transaction

Version 1.1a 1 December 2001

TCPA Main Specification Page 162

8. Set continueAuthSession to FALSE

9. Decrypt the DataUsageAuth and DataMigrationAuth parameters

10. Generate asymmetric key according to algorithm information in keylnfo

11. Fillin the wrappedKey structure with information from the newly generated key.
a. Setthe auth member of this structure to the decrypted values of DataUsageAuth.
b. The TPM MUST set the wrappedKey -> ver to the current TPM version.

c. If the KeyFlags -> migratable bit is set to 1, the wrappedKey -> encData -> migrationAuth
SHALL contain the decrypted value from DataMigrationAuth.

d. If the KeyFlags -> migratable bit is set to 0, and wrappedKey -> encData ->
migrationAuth SHALL be set to the value tpmProof.

12. Encrypt the private portions of the wrappedKey structure using the key in keyHandle

13. Return the newly generated key in the wrappedKey parameter

Version 1.1a 1 December 2001

TCPA Main Specification Page 163

7.2.6 TSS_WrapKey

Actions
The TSS SHOULD do the following:

1.

© N o 0k~ 0N

If the keyUsage field of PubKey does not have the value TPM_KEY_STORAGE, the TSS must return
the error code TCPA_INVALID_KEYUSAGE

Validate the TCPA_STORE_ASYMKEY structure

Fill in the TCPA_STORE_ASYMKEY structure with the authorization and usage parameters
Set KeyFlags.migratable to 1

Set all other KeyFlags members to the values in KeyFlags parameter

Set TCPA_STORE_ASYMKEY.pcrDigest to 20 bytes of value OxFF.

Encrypt the TCPA_STORE_ASYMKEY structure using the pubkey parameter

Return the entire TCPA_KEY structure

Version 1.1a 1 December 2001

TCPA Main Specification Page 164

7.2.7 TSS WrapKeyToPcr

Actions
The TSS SHOULD do the following:

1.

© N o ok~ WD

If the keyUsage field of PubKey does not have the value TPM_KEY_STORAGE, the TSS must return
the error code TCPA _INVALID_KEYUSAGE

Validate the TCPA_STORE_ASYMKEY structure

Fill in the TCPA_STORE_ASYMKEY structure with the authorization and usage parameters
Set KeyFlags.migratable to 1

Set all other KeyFlags members to the values in KeyFlags parameter

Set TCPA_STORE_ASYMKEY.pcrDigest to TargetPCRHash

Encrypt the TCPA_STORE_ASYMKEY structure using the pubkey parameter

Return the entire TCPA_KEY structure

Version 1.1a 1 December 2001

TCPA Main Specification Page 165

7.2.8 TPM_LoadKey
Start of informative comment:

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or perform any
other action, it needs to be present in the TPM. The TPM_LoadKey function loads the key into the TPM
for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. The
assumption is that the handle may change due to key management operations. It is the responsibility of
upper level software to maintain the mapping between handle and any label used by external software.

The load command must maintain a record of whether any previous key in the key hierarchy was bound
to a PCR using parentPCRStatus.

This command has the responsibility of enforcing restrictions on the use of keys. For example, when
attempting to load a STORAGE key it will be checked for the restrictions on a storage key (2048 size
etc.).

The flag parentPCRStatus enables the possibility of checking that a platform passed through some
particular state or states before finishing in the current state. A grandparent key could be linked to state-1,
a parent key could linked to state-2, and a child key could be linked to state-3, for example. The use of
the child key then indicates that the platform passed through states 1 and 2 and is currently in state 3, in
this example. The issue of TPM_Startup is with stType == TCPA_ST_CLEAR is an indication that the
platform has been reset, so the platform has not passed through the previous states. Hence keys with
parentPCRStatus==TRUE must be unloaded if TPM_Startup is issued with stType == TCPA_ST_CLEAR.

If a TCPA_KEY structure has been decrypted AND the integrity test using "pubDataDigest" has passed
AND the key is non-migratory, the key must have been created by the TPM. So there is every reason to
believe that the key poses no security threat to the TPM. While there is no known attack from a rogue
migratory key, there is a desire to verify that a loaded migratory key is a real key, arising from a general
sense of unease about execution of arbitrary data as a key. Ideally a consistency check would consist of
an encrypt/decrypt cycle, but this may be expensive. For RSA keys, it is therefore suggested that the
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, and
checking that there is no remainder.

End of informative comment.
Type

TCPA protected capability; user must provide authorization to use the parent key pointed to by
parentHandle.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # YA

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_LoadKey.

4 4 TCPA_KEY_HANDLE parentHandle TPM handle of parent key.

5 | o | 2 < | Tcpa ey inkey Inco_mmg key structure, both encrypted private and clear
public portions.

6 4 TCPA_AUTHHANDLE authHandle The aqtholnzanon handle used for parentHandle
authorization.

2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs

Version 1.1a 1 December 2001

TCPA Main Specification

Page 166

7 120 | 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
8 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
9 | 20 TCPA_AUTHDATA parentAuth mAaC“ﬂ‘:y”Z;;'r‘;Z &g‘;ﬁjggggﬂﬁ and parentHande.
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_LoadKey
4 4 3s 4 | TCPA_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.
5 120] 2142 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
3E o et o e el
Actions

The TPM SHALL perform the following steps:
1. Validate the authorization to use the key in parentHandle

2. If the keyUsage field of the key referenced by parent handle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE

3. Decrypt the inKey -> privkey to obtain TCPA STORE_ASYMKEY structure using the key in
parentHandle

4. Validate the integrity of inKey and decrypted TCPA_STORE_ASYMKEY

a. Reproduce inKey -> TCPA_STORE_ASYMKEY -> pubDataDigest using the fields of
inKey, and check that the reproduced value is the same as pubDataDigest

5. Validate the consistency of the key and it's key usage.

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the
public and private components of the asymmetric key pair. If inKey -> keyFlags ->
migratable is FALSE, the TPM MAY verify consistency of the public and private
components of the asymmetric key pair. The consistency of an RSA key pair MAY be
verified by dividing the supposed (P*Q) product by a supposed prime and checking that
there is no remainder..

b. IfinKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable is
FALSE. If it is not, return TCPA_BAD_PARAMETER

c. IfinKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TCPA_BAD_PARAMETER

d. If inKey -> keyFlags -> migratable equals 0 then verify that TCPA_STORE_ASYMKEY ->
migration equals TCPA_PERSISTENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes according to section 4@

Version 1.1a 1 December 2001

TCPA Main Specification Page 167

f. IfinKey ->keyUsage is TPM_KEY_STORAGE
i. algorithmID MUST be TCPA _ALG_RSA
ii. Keysize MUST be 2048
iii. sigScheme MUST be TCPA_SS NONE
g. IfinKey ->keyUsage is TPM_KEY_IDENTITY
i. algorithmID MUST be TCPA_ALG_RSA
ii. Keysize MUST be 2048
iii. encScheme MUST be TCPA_ES _NONE
h. If the decrypted InKey ->pcrinfo is not NULL,

i. The TPM validates that inKey -> pcrinfo -> pcrSelection points to at least one
PCR register. If no PCR registers are selected the TPM MUST NOT perform any
further checks regarding PCR registers with the loaded key.

ii. The TPM MUST store the list of active PCR registers in a manner that allows the
TPM to access this list whenever the loaded key is used for any function.

iii. Every time before the loaded key is used, the inkey -> PCRInfo structure from
TPM_LoadKey MUST be used to verify that the current PCR state is correct. The
TPM MUST ensure that the PCRs to which the key was sealed are the same as
the PCRs' values that exist at the time of key usage. To do this, the TPM will
compute a TCPA_COMPOSITE_HASH value using the inkey -> pcrinfo ->
pcrSelection -> pcrSelect parameter as the input to the composite hashing
algorithm (See

iv. If the resulting composite hash matches the inkey -> PCRInfo -> digestAtRelease
parameter, the TPM is permitted to use the key. Otherwise, if the composite
hashes do not match, the TPM is NOT permitted to use the key in the current
PCR state, and the TPM MUST return TCPA_ WRONGPCRVAL.

i. Ifthe decrypted inKey -> pcrinfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using any
PCR registers.

6. Perform any processing necessary to make TCPA_STORE_ASYMKEY key available for operations

7. Load key and key information into internal memory of the TPM. If insufficient memory exists return
error TCPA_NOSPACE.

8. Assign inKeyHandle according to internal TPM rules.
9. Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

10. If ParentHandle indicates it is using PCR registers then set inKeyHandle -> parentPCRStatus to
TRUE. The TPM creates an indicator of PCR usage in step.ii above. This indicator is internal to
the TPM but MUST accurately reflect the sealing of a key to a PCR register.

Version 1.1a 1 December 2001

TCPA Main Specification

7.2.9 TPM_EvictKey

Type

TPM command. Non-authorized.

Incoming Operands and Sizes

Page 168

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_EvictKey
4 4 TCPA_KEY_HANDLE evictHandle The handle of the key to be evicted.
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
|SZ) # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Actions

The TPM will invalidate the key stored in the specified handle and return the space to the available
internal pool for subsequent query by TPM_GetCapability and usage by TPM_LoadKey. If the specified
key handle does not correspond to a valid key, an error will be returned.

Version 1.1a 1 December 2001

TCPA Main Specification

7.2.10 TPM_GetPubKey

Start of informative comment:

Page 169

The owner of a key may wish to obtain the public key value from a loaded key. This information may have
privacy concerns so the command must have authorization from the key owner.

End of informative comment.

Type
TCPA protected capability; user must provide authorization to use the key pointed to by keyHandle.
Incoming Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.
4 4 TCPA_KEY_HANDLE keyHandle TPM handle of key.
5 4 TCPA AUTHHANDLE authHandle The aqtholrization handle used for keyHandle
- authorization.
211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
6 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
8 | 20 TCPA_AUTHDATA keyAuth I:;: igtyhﬁg;gm tdhi.gest for inputs and keyHandle. HMAC
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.
4 | <> | 3s | <> | TCPA PUBKEY pubKey Public portion of key in keyHandle.
5 [20 | 21 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1 0 4 1 | BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
7 1 20 TCPA_AUTHDATA resAuth Ilrll/?A%jtl?g:izgi;EsﬂgZi\tufg the returned parameters.
Actions

The TPM SHALL perform the following steps:

1. Validate the authorization to use the key in keyHandle
2. Create a TCPA_PUBKEY structure and return

Version 1.1a 1 December 2001

TCPA Main Specification Page 170

7.2.11 TPM_CreateMigrationBlob
Start of informative comment:

The TPM_CreateMigrationBlob command implements the first step in the process of moving a migratable
key to a new parent or platform. Execution of this command requires knowledge of the migrationAuth field
of the key to be migrated.

Migrate mode is generally used to migrate keys from one TPM to another for backup, upgrade or to clone
a key on another platform. To do this, the TPM needs to create a data blob that another TPM can deal
with. This is done by loading in a backup public key that will be used by the TPM to create a new data
blob for a migratable key.

The TPM Owner does the selection and authorization of migration public keys at any time prior to the
execution of TPM_CreateMigrationBlob by performing the TPM_AuthorizeMigrationKey command.

IReWrap mode is used to directly move the key to a new parent (either on this platform or another). The
TPM simply re-encrypts the key using a new parent, and outputs a normal encrypted element that can be
subsequently used by a TPM_LoadKey command.

TPM_CreateMigrationBlob implicitly cannot be used to migrate a non-migratory key. No explicit check is
required. Only the TPM knows tpmProof. Therefore it is impossible for the caller to submit an
authorization value equal to tpmProof and migrate a non-migratory key.

End of informative comment.
Type

TCPA protected capability; user must provide authorizations for the entity pointed to by parentHandle and
inData.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ) # YA
1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND
5 4 UINT32 paramSize tTacétal number of input bytes including paramSize and
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob
4 4 TCPA_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.
5 2 2s 2 | TCPA_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP
6 | <>] 3s | <> | TCPA_MIGRATIONKEYAUTH | migrationKeyAuth Migration public key and its authorization digest.
7 4 4s 4 | UINT32 encDataSize The size of the encData parameter
8 | < | 5s | <> | BYTE[] encData The encrypted entity that is to be modified.
9 4 TCPA_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.
2w | 20 | TCPA_NONCE authLastNonceEven ii\r/)elzjr:snonce previously generated by TPM to cover
10 | 20 | 31 | 20 | TcPa NoNCE nonceOdd Nonce generated by system associated with
parentAuthHandle
11| 1 §4m | 1 }BOOL continueAuthSession Continue use flag for parent session
The authorization digest for inputs and
1212 20 | TCPA_AUTHDATA parentAuth parentHandle. HMAC key: parentKey.usageAuth.

Version 1l.1a

1 December 2001

TCPA Main Specification

Page 171

13l 4 TCPA_AUTHHANDLE entityAuthHandle ;r]]t? t;’;\uthorlzamon handle used for the encrypted
212 | 20]| TCPA_NONCE entitylastNonceEven Even nonce previously generated by TPM
. Nonce generated by system associated with
14 |1 20 | 312 | 20 | TCPA_NONCE entitynonceOdd entityAuthHandle
15| 1 |42 | 1]BOOL continueEntitySession | Continue use flag for entity session
. The authorization digest for the inputs and encrypted
16|20 TCPA_AUTHDATA entityAuth entity. HMAC key: entity.migrationAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
sz # | sz
1| 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND
5 4 UINT32 paramsize Total number of output bytes including paramSize
and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_CreateMigrationBlob
4 4 3s 4 | UINT32 randomSize The used size of the output area for random
5 [<> | 4s | <> | BYTE[] random String used for xor encryption
6 4 5s 4 | UINT32 outDataSize The used size of the output area for outData
7 | <> 6s [<> | BYTE[] outData The modified, encrypted entity.
8 | 201 3w | 20 | TcPA NONCE nonceEven Even nonce newly generated by TPM to cover
- outputs
4w | 20 | TcPA NONCE nonceOdd Nonce generated by system associated with
parentAuthHandle
9 1] 51| 1]BOOL continueAuthSession Continue use flag for parent key session
The authorization digest for the returned parameters
10 | 20 20 | TCPA_AUTHDATA resAuth and parentHandle. HMAC key:
parentKey.usageAuth.
11 | 20 | 312 | 20 | TCPA_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity
. Nonce generated by system associated with
4u2 | 20 | TCPA_NONCE entitynonceOdd entityAuthHandle
12 1 1 | 52 | 1 | BOOL ﬁntltyContmueAuthSessm Continue use flag for entity session
. The authorization digest for the returned parameters
1312 TCPA_AUTHDATA entityAuth and entity. HMAC key: entity.migrationAuth.
Description

The key that wraps the migration key MUST be a 2048 bit RSA key or higher.

The TPM does not check the PCR values when migrating values locked to a PCR.

The second authorisation session (using entityAuth) MUST be OIAP because OSAP does not have a

suitable entityType
Actions

Version 1.1a 1 December 2001

TCPA Main Specification Page 172

Validate that parentAuth authorizes the use of the key pointed to by parentHandle.
2. Create d1 by decrypting encData using the key pointed to by parentHandle.

Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> migrationAuth
as the secret.

4. Verify that the digest within migrationKeyAuth is legal for this TPM and public key
If migrationType == TCPA_MS_MIGRATE the TPM SHALL perform the following actions:

a. Build a TCPA_STORE_PRIVKEY structure from the d1 key. This privKey element should be
132 bytes long for a 2K RSA key.

b. Create k1 and k2 by splitting the privKey element created in step a into 2 parts. k1 is the first
20 bytes of privKey, k2 contains the remainder of privKey.

c. Build m by filing in the usageAuth and pubDataDigest fields within a
TCPA_MIGRATE_ASYMKEY structure using data from the d1 key. The privKey field should
be set to k2 (step g) and payload should be setto TCPA PT_MIGRATE.

d. Create ol (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP
encoding of m using OAEP parameters of

i. m=TCPA MIGRATE_ASYMKEY structure (step c)
ii. pHash = d1->migrationAuth
iii. seed=-sl1=Kk1 (stepg)

e. Create rl a random value from the TPM RNG. The size of r1 MUST be the size of 0l. Return
rl in the Random parameter.

f. Create x1 by XOR of 01 with r1
g. Copy rl into the output field “random”.
h. Encrypt x1 with the migration public key included in migrationKeyAuth.
6. If migrationType == TCPA_MS_REWRAP the TPM SHALL perform the following actions:

a. Rewrap the key using the public key in migrationKeyAuth, keeping the existing contents of
that key.

b. If randomSize is 0 the TPM returns TCPA_BAD_PARAMETER.

Version 1.1a 1 December 2001

TCPA Main Specification Page 173

7.2.12 TPM_ConvertMigrationBlob
Start of informative comment:

This command takes a migration blob and creates a normal wrapped blob. The migrated blob must be
loaded into the TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public keys is not
specified by TCPA because they are not security sensitive. Migration of the associated public keys may
be specified in a platform specific specification. A TCPA_KEY structure must be recreated before the
migrated key can be used by the target TPM in a LoadKey command.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the key in parentHandle

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.
4 4 TCPA_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.
5 4 2s 4 1 UINT32 inDataSize Size of inData
6 [<> | 3s | < | BYTE][] inData The XOR'd and encrypted key
7 4 4s 4 | UINT32 randomSize Size of random
8 [<> | 5 | <> | BYTE][] random Random value used to hide key data.
9 4 TCPA_AUTHHANDLE authHandle The authorization handle used for keyHandle.
2w | 20 | Tcea NoncE authLastNonceEven iIf]\F/)tzr:Snonce previously generated by TPM to cover
10 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
111 1 | 4w | 1 | BOOL continueAuthSession | The continue use flag for the authorization handle
The authorization digest that authorizes the inputs and
12 |1 20 TCPA_AUTHDATA parentAuth the migration of the key in parentHandle. HMAC key:
parentKey.usageAuth
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob
4 4 3s 4 | UINT32 outDataSize The used size of the output area for outData

Version 1.1a 1 December 2001

TCPA Main Specification Page 174

The encrypted private key that can be loaded with
5 [<> | 4s | <> | BYTE[] outData TPM_ LoadKey
6 | 20 | 2112 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.
8 | 20 TCPA_AUTHDATA resAuth HMAC key: parentKey.usageAuth
Action

The TPM SHALL perform the following:

1.
2.

© N o 0o > w

Validate the authorization to use the key in parentHandle

If the keyUsage field of the key referenced by parentHandle does not have the value
TPM_KEY_STORAGE, the TPM must return the error code TCPA_INVALID_KEYUSAGE

Create d1 by decrypting the inData area using the key in parentHandle
Create o0l by XOR d1 and random parameter

Create m1, seed and pHash by OAEP decoding o1

Verify that the payload type is TCPA_PT_MIGRATE

Create k1 by combining seed and the TCPA_MIGRATE_ASYMKEY .data field

Create d2 a TCPA_STORE_ASYMKEY structure by inserting pHash as the migration authorization
field. Set the TCPA_STORE_ASYMKEY -> privKey field to k1

Create outData using the key in parentHandle to perform the encryption

Version 1.1a 1 December 2001

TCPA Main Specification Page 175

7.2.13TPM_AuthorizeMigrationKey
Start of informative comment:

This command creates an authorization blob, to allow the TPM owner to specify which migration facility
they will use and allow users to migrate information without further involvement with the TPM owner.

The TPM does no validation of the migration key. It is the responsibility of the TPM Owner to determine
the validity of the key and whether it is appropriate for use by the TPM.

End of informative comment.
Type
TCPA protected capability; user must provide authorization from the TPM Owner

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
|Sz) # | sz
1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

Command ordinal, fixed at

3| 4] 1s | 4 | TCPA_.COMMAND CODE | ordinal TPM ORD, AuthorizeMigrationkey

4 5 25 2 | rcPa MiGRATE SCHEME | migratescheme Type of migration operation that is to be permitted for

this key.
4 | <> | 3s | <> | TCPA_PUBKEY migrationKey The public key to be authorized.
5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
21 | 20 | TCPA_NONCE authLastNonceEven iIi\gzrtlsnonce previously generated by TPM to cover
6 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
8 | 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner

authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
5 4 UINT32 paramSize ;ogtal number of output bytes including paramSize and
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Command ordinal, fixed at

% 4 | TCPA_COMMAND_CODE ordinal TPM_ORD_AuthorizeMigrationKey

4 | <> | 3s | <> | TCPA_MIGRATIONKEYAUTH | outData Returned public key and authorization digest.
5120] 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
aum | 20 | Tcea NoncE nonceOdd Nonce generated by system associated with
authHandle
6 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active

Version 1.1a 1 December 2001

TCPA Main Specification Page 176

The authorization digest for the returned parameters.

7 | 20 TCPA_AUTHDATA resAuth HMAC key: ownerAuth.

Action

The TPM SHALL perform the following:

1. Validate the authorization to use the TPM by the TPM Owner
2. Create afl a TCPA_MIGRATIONKEYAUTH structure

3. Set fl -> migrationKey to the input migrationKey

4. Set fl -> migrationScheme to the input migrationScheme

5

Create vl by concatenating (migrationKey || migrationScheme || TCPA PERSISTENT_DATA ->
tpmProof)

Create h1l by performing a SHA1 hash of v1
Set f1 -> digest to hl

8. Return f1 as outData

Version 1.1a 1 December 2001

TCPA Main Specification Page 177

7.3 TPM Optional Functions: Maintenance
Start of informative comment:

Maintenance is different from backup/migration, because maintenance provides for the migration of both
migratory and non-migratory data. Maintenance is an optional TPM function, but if a TPM enables
maintenance, the maintenance capabilities in this specification are mandatory — no other migration
capabilities shall be used. Maintenance necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its representative
needs to replace a Subsystem containing a TPM. Some manufacturers consider it a requirement that
there be a means of doing this replacement without the loss of the non-migratable keys held by the
original TPM.

The owner and users of TCPA platforms need assurance that the data within protected storage is
adequately protected against interception by third parties or the manufacturer.

This process MUST only be performed between two platforms of the same manufacturer and model. If the
maintenance feature is supported, this section defines the required functions defined at a high level. The
final function definitions and entire maintenance process is left to the manufacturer to define within the
constraints of these high level functions.

Any maintenance process must have certain properties. Specifically, any migration to a replacement
Subsystem must require collaboration between the Owner of the existing Subsystem and the
manufacturer of the existing Subsystem. Further, the procedure must have adequate safeguards to
prevent a non-migratable key being transferred to multiple Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive
enable the transfer of all Protected Storage data from a Subsystem containing a first TPM (TPM;) to a
Subsystem containing a second TPM (TPM,):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture time.

The Owner of TPM; uses TPM_CreateMaintenanceArchive to create a maintenance archive that enables
the migration of all data held in Protected Storage by TPM;. The Owner of TPM; must provide his or her
authorization to the Subsystem. The TPM then creates the TCPA MIGRATE_ASYMKEY structure and
follows the process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM; data.

The additional random data provides a means to assure that a maintenance process cannot subvert
archive data and hide such subversion.

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on the TPM
Owners authorization data.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies itself that the
data bundle represents data from that Subsystem manufactured by that manufacturer. Then the
manufacturer checks the endorsement certificate of TPM, and verifies that it represents a platform to
which data from TPM; may be moved.

The manufacturer dispatches two messages.
The first message is made available to CAs, and is a revocation of the TPM; endorsement certificate.

The second message is sent to the Owner of TPM,, which will communicate the SRK, tpmProof and the
manufacturers permission to install the maintenance blob only on TPM,

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM,, and overwrite the
existing TPM,-SRK and TPM,-tpmProof in TPM,. TPM, overwrites TPM,-SRK with TPM;-SRK, and
overwrites TPM,-tpmProof with TPM;-tpmProof.

Version 1.1a 1 December 2001

TCPA Main Specification Page 178

Any migration of non-migratory data protected by a Subsystem SHALL require the cooperation of both the
Owner of that non-migratory data and the manufacturer of that Subsystem. That manufacturer SHALL
NOT cooperate in a maintenance process unless the manufacturer is satisfied that non-migratory data will
exist in exactly one Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCPA specification.

The maintenance feature MUST move the following

* TCPA_KEY for SRK. The maintenance process will reset the SRK authorization to match the TPM
Owners authorization

- TCPA_PERSISTENT_DATA -> tpmProof

« TPM Owners authorization

Version 1.1a 1 December 2001

TCPA Main Specification

7.3.1 TPM_CreateMaintenanceArchive

Start of informative comment:

Page 179

This command creates the MaintenanceArchive. It can only be executed by the owner, and may be shut
off with the TPM_KillMaintenanceFeature command.

End of informative comment.

Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.
Incoming Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive
4 1 2s 1 | BOOL generateRandom Use RNG or Owner auth to generate ‘random’.
5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
6 | 20 | 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
3E PAATHONA o | etk
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive
4] a3 | 4]unts randomSize Z’LGeef;tg‘s;s;‘émg rordom data. Wil be O1f
5 [<> | 4s | <> | BYTE[] random Random data to XOR with result.
6 4 5s 4 | UINT32 archiveSize Size of the encrypted archive
7 | <> 6s | < | BYTE[] archive Encrypted key archive.
8 | 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1) 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
10 | 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.

HMAC key: ownerAuth.

Version 1l.1a

1 December 2001

TCPA Main Specification Page 180

Actions

Upon authorization being confirmed this command does the following:

1.
2.
3.

10.

11.
12.

13.
14.

Validates that the TCPA_ PERSISTENT_FLAGS -> AllowMaintenance is TRUE.
Validates the TPM Owner authorization.

If the value of TCPA_PERSISTENT_DATA -> ManuMaintPub is zero, the TPM MUST return the error
code TCPA_KEYNOTFOUND

Build al a TCPA_KEY structure using the SRK. The encData field is not a normal
TCPA_STORE_ASYMKEY structure but rather a TCPA_MIGRATE_ASYMKEY structure built using
the following actions.

Build a TCPA_STORE_PRIVKEY structure from the SRK. This privKey element should be 132 bytes
long for a 2K RSA key.

Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is the first 20 bytes
of privKey, k2 contains the remainder of privKey.

Build m1 by creating and filling in a TCPA_MIGRATE_ASYMKEY structure
a. ml->usageAuth is setto TCPA PERSISTENT_FIELDS -> tmpProof
b. m1l->pubDataDigest is set to the digest value of the SRK fields from step 4
c. ml->payload is setto TCPA_PT_MAINT
d. ml -> partPrivKey is set to k2

Create 01 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP encoding of
m using OAEP parameters of

a. m=TCPA_MIGRATE_ASYMKEY structure (step 7)
b. P =TCPA_PERSISTENT_FIELDS -> ownerAuth
c. seed =sl=Kk1 (step 6)

If GenerateRandom = TRUE

a. Create rl by obtaining values from the TPM RNG. The size of r1 MUST be the same size
as 0l. Set RandomData parameter to rl

If GenerateRandom = FALSE

a. Create rl by applying MGF1 to the TPM Owner authorization data. The size of r1 MUST
be the same size as 0l1. Set RandomData parameter to null.

Create x1 by XOR of 01 with rl1

Encrypt x1 with the ManuMaintPub key using the TCPA_ES RSAESOAEP_SHA1l MGF1 encryption
scheme.

Set al -> encData to x1

Return al in the archive parameter

Version 1.1a 1 December 2001

TCPA Main Specification

7.3.2 TPM_LoadMaintenanceArchive

Start of informative comment:

Page 181

This command loads in a Maintenance archive that has been massaged by the manufacturer to load into
another TPM

End of informative comment.
Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive
Vendor specific arguments
- 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
- 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
- 201 - 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
- 1 - 1 | BOOL continueAuthSession | The continue use flag for the authorization handle
- | @ TCPA_AUTHDATA owmerAuh Alhorzaton FMAC ey ouneriut
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive
Vendor specific arguments
- 201 - 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
- 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
- 1 - 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
i 20 TCPA_AUTHDATA resAuth Lr’:/?A%JtE:;jz;xgzrfggﬁt for the returned parameters.

Descriptions

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global secret. The
definition of global secret is a secret value shared by more than one TPM.

Version 1.1a 1 December 2001

TCPA Main Specification Page 182

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption in the
maintenance process. The maintenance process MAY use a TPM lIdentity to deliver maintenance
information to specific TPM’s.

The maintenance process can only change the SRK, tpmProof and TPM Owner authorization fields.

The maintenance process can only access data in shielded locations where this data is necessary to
validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after
maintenance. The maintenance MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.
Actions

The TPM SHALL perform the following when executing the command

1. Validate the TPM Owner’s authorization

2. Validate that the maintenance information was sent by the TPME. The validation mechanism MUST
use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

The packet MUST contain m2 as defined in 7.§.1_|

4. Ensure that only the target TPM can interpret the maintenance packet. The protection mechanism
MUST use a strength of function that is at least the same strength of function as a digital signature
performed using a 2048 bit RSA key.

5. Process the maintenance information and update the SRK and TCPA_PERSISTENT_DATA ->
tpmProof fields.

6. Setthe SRK useageAuth to be the same as TPM Owners authorization

Version 1.1a 1 December 2001

TCPA Main Specification Page 183

7.3.3 TPM_KillMaintenanceFeature
Informative Comments:

The KillMaintencanceFeature is a permanent action that prevents ANYONE from creating a maintenance
archive. This action, once taken, is permanent until a new TPM Owner is set.

This action is to allow those customers who do not want the maintenance feature to not allow the use of
the maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such a way that the
only way to recover maintainability of the platform would be to wipe out the root keys. This feature is
mandatory in any TPM that implements the maintenance feature.

End informative Comment
Type
Optional; TCPA protected capability; user must provide authentication from the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ # YA
1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature
4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
2w | 20 | Tcea NoNcE authLastNonceEven iIf]\F/)tzr:Snonce previously generated by TPM to cover
5 120] 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
The authorization digest for inputs and owner
T TCPA_AUTHDATA ownerAuth authorization. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description

| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature
4 |1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
6 | 20 TCPA_AUTHDATA resAuth Lr,{/eer%JtEg:izsxﬁzr(:S&s.t for the returned parameters.

Actions

Version 1.1a 1 December 2001

TCPA Main Specification Page 184

1. Validate the TPM Owner authorization
2. Setthe TCPA PERSISTENT_ FLAGS.AllowMaintenance flag to FALSE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 185

7.3.4 TPM_LoadManuMaintPub
Informative Comments:

The LoadManuMaintPub command loads the manufacturer's public key for use in the maintenance
process. The command installs ManuMaintPub in persistent data storage inside a TPM. Maintenance
enables duplication of non-migratory data in protected storage. There is therefore a security hole if a
platform is shipped before the maintenance public key has been installed in a TPM.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected
storage. It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ) # YA
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub
4 120 TCPA_NONCE antiReplay AntiReplay and validation nonce
5 | < TCPA_PUBKEY pubKey Thg public key of the manufacturer to be in use for
maintenance
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
| SZ) # SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_LoadManuMaintPub
4 120 TCPA_DIGEST checksum Digest of pubKey and antiReplay

Type
Optional; TCPA protected capability
Description

The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm with 2048bit
keys.

pubKey SHOULD unambiguously identify the entity that will perform the maintenance process with the
TPM Owner.

TCPA_PERSISTENT_DATA -> ManuMaintPub SHALL exist in a TCPA-shielded location, only.

If an entity (Platform Entity) does not support the maintenance process but issues a platform credential
for a platform containing a TPM that supports the maintenance process, the value of
TCPA_PERSISTENT_DATA -> ManuMaintPub MUST be set to zero before the platform leaves the
entity’s control.

Version 1.1a 1 December 2001

TCPA Main Specification Page 186

Actions
The first valid TPM_LoadManuMaintPub command received by a TPM SHALL
1. Store the parameter pubKey as TCPA_ PERSISTENT_DATA -> ManuMaintPub.

2. Create “checksum” by concatenating data to form (pubKey|lantiReplay) and passing the
concatenated data through a SHA-1 hash process.

3. Export the checksum

Subsequent calls to TPM_LoadManuMaintPub SHALL return code TCPA_FAIL.

Version 1.1a 1 December 2001

TCPA Main Specification Page 187

7.3.5 TPM_ReadManuMaintPub
Informative Comments:

The ReadManuMaintPub command is used to check whether the manufacturer’s public maintenance key
in a TPM has the expected value. This may be useful during the manufacture process. The command
returns a digest of the installed key, rather than the key itself. This hinders discovery of the maintenance
key, which may (or may not) be useful for manufacturer privacy.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected
storage. It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ) # YA
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub
4 120 TCPA_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 120 TCPA_DIGEST checksum Digest of pubKey and antiReplay

Type
Optional; TCPA protected capability
Description

This command returns the hash of the antiReplay nonce and the previously loaded manufacturer's
maintenance public key.

Actions
The TPM_ ReadManuMaintKey command SHALL

1. Create “checksum” by concatenating data to form (TCPA_PERSISTENT_DATA -> ManuMaintPub
[|lantiReplay) and passing the concatenated data through SHA1.

2. Export the checksum

Version 1.1a 1 December 2001

TCPA Main Specification Page 188

8. Cryptographic and Miscellaneous Functions

8.1 Introduction

Version 1.1a 1 December 2001

TCPA Main Specification Page 189

8.2 TPM Hash Operations

The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start command and
a TPM_SHA1Complete command SHALL be a variable number (possibly 0) of TPM_SHAlUpdate
commands.

The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start command and
a TPM_SHA1CompleteExtend command SHALL be a variable number (possibly 0) of TPM_SHA1Update
commands.

Version 1.1a 1 December 2001

TCPA Main Specification

8.2.1 TPM_SHA1Start

Start of informative comment:

Page 190

This capability starts the process of calculating a SHA-1 digest.

End of informative comment.

Type
TCPA protected capability

Incoming Operands and Sizes

PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_SHA1Start
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Maximum number of bytes that can be sent to
4 4 UINT32 maxNumBytes TPM_SHA1Update. Must be a multiple of 64 bytes.
Description

This capability prepares the TPM for a subsequent TPM_SHAlUpdate, TPM_SHA1Complete or
TPM_SHA1CompleteExtend command. The capability SHALL open a thread that calculates a SHA-1
digest.

Version 1.1a 1 December 2001

TCPA Main Specification

8.2.2 TPM_SHA1lUpdate

Start of informative comment:

Page 191

This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of the process, the
digest remains pending.

End of informative comment.

Type
TCPA protected capability

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND CODE | ordinal Command ordinal, fixed value of TPM_ORD_SHA1Update
4 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64
bytes.
5 | <> BYTE[] hashData Bytes to be hashed
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Description

This command SHALL incorporate complete blocks of data into the digest of an existing SHA-1 thread.
Only integral numbers of complete blocks (64 bytes each) can be processed.

Version 1.1a 1 December 2001

TCPA Main Specification

8.2.3 TPM_SHA1Complete

Start of informative comment:

This capability terminates a pending SHA-1 calculation.

End of informative comment.

Type

TCPA protected capability

Incoming Operands and Sizes

Page 192

PARAM | HMAC -
Type Name Description
SZ | # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_SHA1Complete
4 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less
5 | <> BYTE[] hashData Final bytes to be hashed
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 120 TCPA_DIGEST hashValue The output of the SHA-1 hash.
Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, and terminate that thread. hashDataSize MAY have values in the range of 0 through 64, inclusive.

Version 1.1a 1 December 2001

TCPA Main Specification Page 193

8.2.4 TPM_SHA1CompleteExtend
Start of informative comment:

This capability terminates a pending SHA-1 calculation and EXTENDS the result into a Platform
Configuration Register using a SHA-1 hash process.

This command is designed to complete a hash sequence and extend a PCR in memory-less
environments.

End of informative comment.
Type
TCPA protected capability

Incoming Operands and Sizes

PARAM HMAC

Type Name Description

SZ | # SZ

1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 | 4 TCPA_COMMAND_CODE | ordinal ?‘;mgg%irsdgﬂcfzgél‘(’e ";"e“Eexgn ;

4 4 TCPA_PCRINDEX pcrNum Index of the PCR to be modified

5 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 | < BYTE[] hashData Final bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 120 TCPA_DIGEST hashValue The output of the SHA-1 hash.
5120 TCPA_PCRVALUE outDigest The PCR value after execution of the command.
Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, EXTEND the resultant digest into a PCR, and terminate the thread. hashDataSize MAY have
values in the range of 0 through 64, inclusive.

Version 1.1a 1 December 2001

TCPA Main Specification Page 194

8.3 Key Certification

8.3.1 TPM_CertifyKey
Start of informative comment:

The TPM_CERTIFYKEY operation allows a key to certify the public portion of certain storage and signing
keys.

A TPM identity key may be used to certify non-migratable keys but is not permitted to certify migratory
keys. As such, it allows the TPM to make the statement “this key is held in a TCPA-shielded location, and
it will never be revealed.” For this statement to have veracity, the Challenger must trust the policies used
by the Privacy CA that issued the identity and the maintenance policy of the TPM manufacturer.

Signing and legacy keys may be used to certify both migratable and non-migratable keys. Then the
usefulness of a certificate depends on the trust in the certifying key by the recipient of the certificate.

The key to be certified must be loaded before TPM_CertifyKey is called.
See appendix B for a table of where and when keys are in use.

End of informative comment.

Type

TCPA protected capability; user must authorize the use of key pointed to by idHandle and the key pointed
to by keyHandle.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

sz # | sz

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

5 4 UINT32 paramsize ;(;tal number of input bytes including paramSize and

3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed at TPM_ORD_CertifyKey

4 4 TCPA_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TCPA_KEY_HANDLE keyHandle Handle of the key to be certified.

6 | 20| 25 | 20 | TcPa NONCE antiReplay 160 _blts of externally supplied data (typically a nonce
provided to prevent replay-attacks)

7 4 TCPA_AUTHHANDLE certAuthHandle The authorization handle used for certHandle

2u | 20 | TCPA_NONCE authLastNonceEven iIi\éfjrtlsnonce previously generated by TPM to cover
8 | 2013 20 | TcPa NONCE nonceOdd Nonce generated by system associated with
HL - certAuthHandle

9 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
The authorization digest for inputs and certHandle.

10 | 20 TCPA_AUTHDATA certAuth HMAC key: certKey.auth.

11| 4 TCPA_AUTHHANDLE keyAuthHandle The authorization handle used for the key to be signed.

212 | 20 | TCPA_NONCE keylastNonceEven Even nonce previously generated by TPM

Nonce generated by system associated with

12 | 20 | 312 | 20 | TCPA_NONCE keynonceOdd keyAuthHandle

Version 1.1a 1 December 2001

TCPA Main Specification Page 195

13 1 | 42| 1 | BOOL continueKeySession The continue use flag for the authorization handle
The authorization digest for the inputs and key to be
1“2 TCPA_AUTHDATA keyAuth signed. HMAC key: key.usageAuth.

Outgoing Operands and Sizes

Param HMAC o
Type Name Description
| Sz # Sz
1| 2 TCPA TAG tag TPM_TAG_RSP_AUTH2_COMMAND
9 4 UINT32 paramSize tTa(;tall number of output bytes including paramSize and
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal TPM_ORD_CertifyKey
4 | 95| 35 | 95 | TcPA CERTIFY INFO certifylnfo Tlhe certifylnfo structure that corresponds to the
- - signed key.
5 4 4s 4 | UINT32 outDataSize The used size of the output area for outData
6 [< | 5 | <> | BYTE[] outData The signed public key.
7 | 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM
Nonce generated by system associated with
311 | 20 | TCPA_NONCE nonceOdd certAuthHandle
8 1] 4m | 1] BOOL continueAuthSession Continue use flag for cert key session
The authorization digest for the returned parameters
9| 20 | TCPA_AUTHDATA resAuth and parentHandle. HMAC key: certKey -> auth.
10 | 20 | 212 | 20 | TCPA_NONCE keyNonceEven Even nonce newly generated by TPM
Nonce generated by system associated with
3H2 | 20 | TCPA_NONCE keynonceOdd keyAuthHandle
11 1 § 42| 1 | BOOL continueKeyAuthSession | Continue use flag for target key session
12 | 20 TCPA_AUTHDATA keyAuth Thg authorization digest for the target key. HMAC
key: key.auth.
Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of
TCPA_SS_RSASSAPKCS1v15 SHAL.
2. The TPM verifies the authorization in certAuthHandle provides authorization to use the key pointed to
by certHandle.
3. The TPM verifies the authorization in keyAuthHandle provides authorization to use the key pointed to
by keyHandle.
4. If the key pointed to by certHandle is an identity key (certHandle:TCPA _KEY -> keyUsage is
TPM_KEY_IDENTITY), the TPM verifies that the key pointed to by keyHandle is a non-migratory key.
5. The TPM SHALL create a c1 a TCPA_CERTIFY_INFO (defined in section 4@tructure from the
key pointed to by keyHandle.
6. The TPM calculates the digest of the (public key) keyHandle -> pubKey -> key and stores it in the c1 -

> pubkeyDigest.

Version 1.1a 1 December 2001

TCPA Main Specification Page 196

The TPM copies the antiReplay parameter to the TCPA_CERTIFY_INFO cl -> data.

8. If pcrinfoSize is not O for the key pointed by keyHandle,
a. The TPM MUST set cl1 -> pcrinfoSize to match the pcrinfoSize from the keyHandle key.
b. The TPM MUST set c1 -> pcrinfo to match the pcrinfo from the keyHandle key.
c. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00.

9. If pcrinfoSize is O for the key pointed to by keyHandle
a. The TPM MUST set c1 -> pcrinfoSize to 0

10. The TPM creates m1, a message digest formed by taking the SHA1 of c1.

11. The TPM then performs a signature using certHandle -> sigScheme. The resulting signed blob is
returned in outData.

Version 1.1a 1 December 2001

TCPA Main Specification Page 197

8.4 TPM Internal Asymmetric Encryption

The TPM MUST check that the encryption scheme defined for use with the key is a valid scheme for the
key type, as follows:

Key algorithm Approved schemes Scheme Value

TCPA_ALG_RSA | TCPA_ES_NONE 0x0001
TCPA_ES_RSAESPKCSv15 0x0002
TCPA_ES_RSAESOAEP_SHA1 MGF1 0x0003

For a TPM_UNBIND command where the parent key has pubKey.algorithmld equal to TCPA_ALG_RSA
and pubKey.encScheme set to TCPA _ES RSAESPKCSvl15 the TPM SHALL NOT expect a
PAYLOAD_TYPE structure to pre-pend the decrypted data.

The TPM MUST perform the encryption or decryption in accordance with the specification of the
encryption scheme, as described below.

When a null terminated string is included in a calculation, the terminating null SHALL NOT be included in
the calculation.

Version 1.1a 1 December 2001

TCPA Main Specification Page 198

8.4.1 TCPA_ES_RSAESOAEP_SHA1l_MGF1

The encryption and decryption MUST be performed using the scheme RSA_ES_OAEP defined in [PKCS
#1v2.0: 8.1] using SHA1 as the hash algorithm for the encoding operation.

1. Encryption
a. The OAEP encoding P parameter MUST be the NULL terminated string “TCPA”.

b. If there is an error with the encryption the TPM must return the error
TCPA_ENCRYPT_ERROR.

2. Decryption
a. The OAEP decoding P parameter MUST be the NULL terminated string “TCPA”.
b. If there is an error with the decryption, the TPM must return the error
TCPA_DECRYPT_ERROR.
8.4.2 TCPA_ES RSAESPKCSV15

The encryption MUST be performed using the scheme RSA _ES PKCSV15 defined in [PKCS #1v2.0:
8.1].

1. Encryption

a. If there is an error with the encryption, return the error TCPA_ENCRYPT_ERROR.
2. Decryption

a. If thereis an error with the decryption, return the error TCPA_DECRYPT_ERROR.

8.5 TPM Internal Digital Signatures

Start of informative comment:

These values indicate the approved schemes in use by the TPM to generate digital signatures.
End of informative comment.

The TPM MUST check that the signature scheme defined for use with the key is a valid scheme for the
key type, as follows:

Key algorithm Approved schemes Scheme Value

TCPA_ALG_RSA | TCPA_SS_NONE 0x0001
TCPA_SS_RSASSAPKCS1v15 SHA1 0x0002
TCPA_SS_RSASSAPKCS1v15 DER 0x0003

The TPM MUST perform the signature or verification in accordance with the specification of the signature
scheme, as described below.

8.5.1 TCPA_SS_RSASSAPKCS1v15_SHA1l

The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0:
8.1] using SHA1 as the hash algorithm for the encoding operation.

Version 1.1a 1 December 2001

TCPA Main Specification Page 199

8.5.2 TCPA_SS_RSASSAPKCS1v15_DER

The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0:
8.1]. The caller must properly format the area to sign using the DER rules. The provided area maximum
size is k-11 octets.

8.6 HMAC Calculation

The TPM MUST support the calculation of an HMAC according to RFC 2104.

The size of the key (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) MUST be 64
bytes.

The order of the parameters is critical to the TPM's ability to recreate the HMAC. Not all of the fields are
sent on the wire for each command for instance only one of the nonce values travels on the wire. The
order of the parameters is set by section 4@,

Each function indicates what parameters are involved in the HMAC calculation.

Version 1.1a 1 December 2001

TCPA Main Specification

8.7 Digital S

8.7.1 TPM_Sign

Start of informative

ignatures

comment:

Page 200

The Sign command signs data and returns the resulting digital signature

End of informative comment.

Type

TCPA protected capability; user must provide authorization to use the keyHandle parameter.

Incoming Operands and S

izes

PARAM HMAC -
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Sign.
4 4 TCPA_KEY_HANDLE keyHandle gz:]?t ;legsr?;\g?egentifier of a loaded key that can perform
5 4 2s 4 | UINT32 areaToSignSize The size of the areaToSign parameter
6 [<> | 3s | <> | BYTE[] areaToSign The value to sign
71 4 TCPA_AUTHHANDLE authHandle ;S&gﬁ;g‘t’igﬁaﬁon handle used for keyHandle
2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
8 | 20 | 311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1)4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
NE et e e e
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Sign.
4 4 3s 4 | UINT32 sigSize The length of the returned digital signature
5 [<> | 4s | <> | BYTE[] sig The resulting digital signature.
6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active

Version 1l.1a

1 December 2001

TCPA Main Specification

Page 201

20

TCPA_AUTHDATA

resAuth

The authorization digest for the returned parameters.
HMAC key: key.usageAuth

Description

The TPM MUST support all values of areaToSignSize that are legal for the defined signature scheme and
key size. The maximum value of areaToSignSize is determined by the defined signature scheme and key
size. In the case of PKCS1vl5 SHAL the areaToSignSize MUST be TCPA_DIGEST (the hash size of a
shal operation - see 8.5.1 TCPA_SS_RSASSAPKCS1v15_SHAL). In the case of PKCS1vl5 DER the
maximum size of areaToSign is k-11 octets, where k is limited by the key size (see 8.5.2

TCPA_SS_RSASSAPKCS1v15 DER).
Actions

1.
2.
3.

If the areaToSignSize is 0 the TPM returns TCPA_BAD_PARAMETER.

The TPM validates the authorization to use the key pointed to by keyHandle.

Validate that keyHandle -> keyUsage is TPM_KEY_SIGN or TPM_KEY_LEGACY, if not return the
error code TCPA_INVALID_KEYUSAGE

The TPM verifies that the signature scheme used by the key referenced by keyHandle is a valid and
supported signature scheme.

The TPM verifies that the signature scheme and key size can properly sign the areaToSign

parameter.

The TPM computes the signature, sig, using the key referenced by keyHandle, using with areaToSign
as the information to be signed

Version 1.1a 1 December 2001

TCPA Main Specification Page 202

8.7.2 TSS_VerifySignature

Version 1.1a 1 December 2001

TCPA Main Specification Page 203

8.8 Random Numbers

Version 1.1a 1 December 2001

TCPA Main Specification

8.8.1 TPM_GetRandom

Start of informative comment:

Page 204

GetRandom returns the next bytesRequested bytes from the random number generator to the caller.

End of informative comment.

Type

TCPA protected capability.

Incoming Operands and Sizes

PARAM | HMAC -
Type Name Description
SZ | # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_GetRandom.
4 4 UINT32 bytesRequested | Number of bytes to return
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 UINT32 randomBytesSize The number of bytes returned
5 | <> BYTE[] randomBytes The returned bytes
Actions

1. The TPM determines if amount bytesRequested is available from the TPM.

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY be less than
randomBytesSize.

Set randomBYytes to the next randomBytesSize bytes from the RNG

4. It is RECOMMENDED that a TPM implement the RNG in a manner that would allow it to return RNG
bytes such that the frequency of bytesRequested being less than the number of bytes available be a
infrequent occurrence.

Version 1.1a 1 December 2001

TCPA Main Specification

8.8.2 TPM_StirRandom

Start of informative comment:

StirRandom adds entropy to the RNG state.

End of informative comment.

Type

TCPA protected capability.

Incoming Operands and Sizes

Page 205

PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_StirRandom
4 4 UINT32 dataSize Number of bytes of input (<256)
5 | < BYTE[] inData Data to add entropy to RNG state
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
|SZ)| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Actions

The TPM updates the state of the current RNG using the appropriate mixing function.

Version 1.1a 1 December 2001

TCPA Main Specification Page 206

8.9 Self Test

Start of informative comment:

The self-test capabilities are designed to enable the creation of a TCPA platform with minimum latency
due to TPM self-test. It might be possible to avoid wasting time, waiting for a TPM to do self-test, by
designing a platform where TPM self-testing is done in parallel with other system functions, at a time
when TPM capabilities are not required.

At startup, a TPM automatically tests just those internal functions that are used by critical TPM
capabilities. This permits the use of those critical TPM capabilities as soon as possible after startup.
Remaining TPM capabilities use additional internal functions that must be tested before the remaining
TPM capabilities can execute. A test of the additional functions can be explicitly called. Alternatively,
those functions will automatically be tested prior to execution of the first call to a capability that uses those
functions. At any time, other self-test commands will explicitly cause the TPM to do a full self-test.

TPM_SelfTestFull causes the TPM to do a full self-test.

TPM_CertifySelfTest causes the TPM to do a full self-test and sign the result. It enables the caller to
verify that the self-test actually executed and trust the answer. It requires authorization to use a signing
key inside the TPM. If the command fails for any reason, the command will not return a signature. The
lack of a signature field returning to a Challenger is in itself an indication that some part of the process
failed. The failure could be an attack against the signature or a failure in the TPM.

TPM_ContinueSelfTest causes the TPM to test the TPM internal functions that were not tested at startup.
TPM_ContinueSelfTest is unusual, in that it returns a result code to the caller before execution of the
command and does not return a result code to the caller after execution of the command. If the functions
used by a capability have not been tested, TPM_ContinueSelfTest is executed automatically after that
capability is called and before it is executed. It is anticipated that the caller or TPM driver software is
preprogrammed with knowledge of the time that the TPM will require to complete TPM_ContinueSelfTest.
It is anticipated that a call to a TPM that is executing TPM_ContinueSelfTest would result in a “busy”
indication.

The tests themselves only return a TCPA_SUCCESS or TCPA_FAIL answer. TPM_GetTestResult must
be used to discover why self-test failed. Upon the failure of a self-test the TPM goes into failure mode and
does not allow most other operations to continue.

End of informative comment.

At startup, a TPM MUST self-test all internal functions that are necessary to do TPM_SHA1lStart,
TPM_SHAlUpdate, TPM_SHA1Complete, TPM_SHAl1CompleteExtend, TPM_Extend, TPM_Startup,
TPM_ContinueSelfTest. This process MUST take 20ms or less.

TSC commands do not operate on shielded locations and have no requirement to be self tested before
any use. TPM’s SHOULD test these functions before operation.

Some internal functions MUST be tested before the TPM responds to any capability (see m Some
internal functions SHOULD be tested before the TPM responds to any capability (see 10.8.2)

If self test has failed, the TPM SHALL respond to all commands (except the update commands) with the
error code TCPA_FAILEDSELFTEST (see

If the functions used by a capability have not been tested, TPM_ContinueSelfTest is executed
automatically after that capability is called and before it is executed returning the error
TCPA _NEED SELFTEST

Version 1.1a 1 December 2001

TCPA Main Specification Page 207

8.9.1 TPM_SelfTestFull

Start of informative comment:

SelfTestFull tests all of the TCPA protected capabilities.
End of informative comment.

Type

TCPA protected capability

Incoming Operands and Sizes

PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_SelfTestFull

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions
1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function.

2. Failure of any test results in overall failure, and the TPM goes into failure mode.

Version 1.1a 1 December 2001

TCPA Main Specification Page 208

8.9.2 TPM_CertifySelfTest
Start of informative comment:

CertifySelfTest causes the TPM to perform a full self-test and return an authenticated value if the test
passes.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the
third party. A TPM-identity key may be suitable.

End of informative comment.
Type
TCPA protected capability; user must provide authorization to use the keyHandle parameter.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_CertifySelfTest

The keyHandle identifier of a loaded key that can perform

4 4 TCPA_KEY_HANDLE keyHandle NG
digital signatures.

5 120] 2s | 20 | TCPA_NONCE antiReplay AnitReplay nonce to prevent replay of messages

6 4 TCPA_AUTHHANDLE authHandle The agtholnzatlon handle used for keyHandle
authorization

211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs

7 120 | 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle

9 | 20 TCPA_AUTHDATA privAuth The authorization digest that authorizes the inputs and

use of keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| SZ # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_CertifySelfTest
4 4 3s 4 | UINT32 sigSize The length of the returned digital signature
5 [<> | 4s | <> | BYTE[] sig The resulting digital signature.
6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

Version 1.1a 1 December 2001

TCPA Main Specification Page 209

311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.
8 | 20 TCPA_AUTHDATA resAuth HMAC key: key.usageAuth

Description

The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or
TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual TPM.

Actions
1. The TPM SHALL perform TPM_SelfTestFull. If the test fails the TPM returns the appropriate error
code.

2. After successful completion of the self-test the TPM then validates the authorization to use the key
pointed to by keyHandle.

Create t1 the null terminated string of “Test Passed”
4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal.

The TPM signs m2 using the key identified by keyHandle, and returns the signature as sig.

Version 1.1a 1 December 2001

TCPA Main Specification

8.9.3 TPM_ContinueSelfTest

Start of informative comment:

Page 210

CotinueSelfTest informs the TPM that it may complete the self test of all TPM functions.

End of informative comment.

Type

TCPA protected capability

Incoming Operands and Sizes

PARAM | HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_ContinueSelfTest
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Actions

TPM_ContinueSelfTest SHALL cause the TPM to do all self-tests that are outstanding, since startup. It
SHALL immediately respond to the caller with a return code. When TPM_ContinueSelfTest finishes
execution, it SHALL NOT respond to the caller with a return code.

The TPM SHALL unilaterally execute the functions of TPM_ContinueSelfTest upon receipt of a command
that calls a capability-X that uses untested TPM functions. If the self-test fails, the TPM SHALL return the
error code TCPA_FAILEDSELFTEST. If the self-test passes, the TPM SHALL execute capability-X.

Version 1.1a 1 December 2001

TCPA Main Specification

8.9.4 TPM_GetTestResult

Start of informative comment:

Page 211

TPM_GetTestResult provides manufacturer specific information regarding the results of the self test. This
command will work when the TPM is in self test failure mode. The reason for allowing this command to
operate in the failure mode is to allow TPM manufacturers to obtain diagnostic information.

End of informative comment.

Type
TCPA protected capability

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_GetTestResult
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 UINT32 outDataSize The size of the outData area
5 | < BYTE[] outData The outData this is manufacturer specific
Actions

The TPM SHALL respond to this command with a manufacturer specific block of information that

describes the result of the latest self test.

The information MUST NOT contain any data that uniquely identifies an individual TPM.

Version 1.1a 1 December 2001

TCPA Main Specification Page 212

8.10 Reset and Clear Operations

The TPM MUST support the reset operation. The reset operation clears all handles, authorization
sessions and volatile state machines. The reset MUST NOT affect the SRK, PCR and flags such as the
flag set by TPM_DisableForceClear.

The TPM MUST support the clear operations. The clear operation MUST perform the following actions:
» Perform a reset operation

* Delete the SRK

» Reset all non-volatile values to factory default except the endorsement key pair

» Return TCPA_NOSRK until there is a proper execution of the ownership function

The TPM MUST support disabling the clear operations. After execution of the TPM_DisableOwnerClear
the TPM MUST require physical access to execute the TPM_ForceClear. The TPM MUST support the
TPM_DisableForceClear to disable the TPM_ForceClear command. The TPM_DisableForceClear
command MUST execute on each startup cycle to be effective.

Version 1.1a 1 December 2001

TCPA Main Specification Page 213

8.10.1 TPM_Reset
Start of informative comment:

TPM_reset releases all resources associated with existing authorisation sessions. This is useful if a TSS
driver has lost track of the authorisation state in the TPM, for example.

End of informative comment.
Type
TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_Reset.

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions

1. The TPM frees all resources allocated to authorization sessions extant in the TPM
The TPM does not reset any PCR or DIR values.

The TPM does not reset any flags in the TCPA_VOLATILE_FLAGS structure.

The TPM does not reset or delete any keys

A WD

Version 1.1a 1 December 2001

TCPA Main Specification Page 214

8.10.2 TPM_lInit

Definition
TPM Init();

Type

TCPA protected capability that requires physical indication from the platform
Parameters

None

Description

The platform MUST be designed such that if the TPM_Init signal is asserted the entire Platform MUST be
initialized. This prevents, at least with a minimum effort, someone touching the TPM_Init pin on the TPM
and resetting only the TPM.

The TPM_Init signal MUST have signaling qualifications appropriate for the required conformance and
Protection Profile for the Platform.

Actions
1. The TPM performs a TPM_Reset.

2. The TPM sets TCPA_VOLATILE_FLAGS -> postlnitialise to TRUE. See 4.13.3 [for details of the
"postinitialise" state.

Version 1.1a 1 December 2001

TCPA Main Specification Page 215

8.10.3 TPM_SaveState

Start of informative comment:

This warns a TPM to save some state information.

If the relevant shielded storage is non-volatile, this command need have no effect.

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of external
power in time to move data to non-volatile memory, this command should be presented before the TPM
enters a low or no power state.

End of informative comment.
Type
TCPA protected capability

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
SZ | # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_SaveState.

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Description
Preserved values MUST be non-volatile.

If data is never stored in a volatile medium, that data MAY be used as preserved data. In such cases, no
explicit action may be required to preserve that data.

If an explicit action is required to preserve data, it MUST be possible to determine whether preserved
data is valid.

If the parameter mirrored by a preserved value is altered, the preserved value MUST be declared invalid.
If the parameter mirrored by any preserved value is altered, all preserved values MAY be declared
invalid.

Actions
1. The contents of all PCRs MUST be preserved.
2. The contents of the auditDigest MUST be preserved.
3. The state of the flags:
i. TCPA_VOLATILE_FLAGS -> PhysicalPresence
ii. TCPA_VOLATILE_FLAGS -> PhysicalPresencelLock

Version 1.1a 1 December 2001

TCPA Main Specification Page 216

iii. TCPA VOLATILE_FLAGS -> deactivated
iv. TCPA_VOLATILE_FLAGS -> disableForceClear

MUST be preserved.

4. The contents of any key that is currently loaded SHOULD be preserved if the key's parentPCRStatus
indicator is FALSE and its IsVolatile indicator is FALSE. The contents of any key that is currently
loaded MAY be preserved if its parentPCRStatus indicator is TRUE or its IsVolatile indicator is TRUE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 217

8.10.4 TPM_Startup
Start of informative comment:

Some trusted entity must determine the type of startup state that is required and submit TPM_Startup
with the appropriate option.

TPM_Startup must always be preceded by TPM_Init, which is a physical indication (probably just a
system-wide reset signal) to a TPM that initialization is required. Determining the type of initialization
requires more intelligence than may be available from a simple physical mechanism, so TPM_Startup is
used to signal the type of initialization that is required.

A key that is itself wrapped to PCRs is not unloaded at startup because:

a) existing mechanisms (specified in TPM_LoadKey) prevent use of the key unless the PCRs match. So
it is unnecessary to unload the key

b) the key may be required for later use, without reloading, in which case it is undesirable to unload the
key.

End of informative comment.
Type
TCPA protected capability

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
SZ | # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_Startup
4 2 TCPA_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Operands and Sizes

PARAM | HMAC -
Type Name Description
| SZ) # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Description

TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

Actions

1. Ifno EK is present, the TPM MUST return TCPA_NO_ENDORSEMENT and exit this capability.

2. If TCPA_VOLATILE_FLAGS -> postlnitialise is FALSE, the TPM MUST return
TCPA_INVALID_POSTINIT, and exit this capability.

3. If stType = TCPA_ST_CLEAR
a. Reset PCR’s

Version 1.1a 1 December 2001

TCPA Main Specification Page 218

4,

5.

a.

Reset the auditDigest
The TPM Must set the following flags to their default state:
i. TCPA VOLATILE_FLAGS -> PhysicalPresence
ii. TCPA_VOLATILE_FLAGS -> PhysicalPresencelLock
iii. TCPA_ VOLATILE_FLAGS -> disableForceClear

The TPM SHALL set TCPA_VOLATILE_FLAGS -> deactivated to the same state as
TCPA_PERSISTENT_FLAGS -> deactivated

The TPM SHALL take all necessary actions to ensure that all loaded keys contain the
preserved value if the preserved value is valid and the preserved value's parentPCRStatus
indicator is FALSE and its IsVolatile indicator is FALSE. All other key areas MUST be
unloaded. If the TPM is unable to successfully complete these actions, it SHALL enter the
TPM failure mode.

If stType = TCPA_ST_STATE

a.

The TPM SHALL take all necessary actions to ensure that all PCRs contain valid preserved
values. If the TPM is unable to successfully complete these actions, it SHALL enter the TPM
failure mode.

The TPM SHALL take all necessary actions to ensure that the auditDigest contains a valid
preserved value. If the TPM is unable to successfully complete these actions, it SHALL enter
the TPM failure mode.

The TPM MUST restore the following flags to their preserved states:
i. TCPA_VOLATILE_FLAGS -> PhysicalPresence
ii. TCPA_VOLATILE_FLAGS -> PhysicalPresencelLock
iii. TCPA_VOLATILE_FLAGS -> deactivated
iv. TCPA_VOLATILE_FLAGS -> disableForceClear
The TPM MUST restore all keys that have been saved

The TPM resumes normal operation. If the TPM is unable to resume normal operation, it
SHALL enter the TPM failure mode.

If stType = TCPA_ST_DEACTIVATED

The TPM MUST set TCPA_VOLATILE_FLAGS -> deactivated to TRUE

6. The TPM MUST invalidate any explicitly preserved state and set TCPA_VOLATILE_FLAGS ->

postinitialise to FALSE.

Version 1.1a 1 December 2001

TCPA Main Specification

8.10.5 TPM_OwnerClear

Start of informative comment:

Page 219

The OwnerClear command performs the clear operation under Owner authorization. This command is
available until the Owner executes the DisableOwnerClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.

Type

TCPA protected capability; user must provide authorization as the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz
1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear
4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

2w | 20 | Tcea NoncE authLastNonceEven iIf]\F/)tzr:Snonce previously generated by TPM to cover
5 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1) 4m | 1] BOOL continueAuthSession | Ignored

The authorization digest for inputs and owner
T TCPA_AUTHDATA ownerAuth authorization. HMAC key: ownerAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description

|SZ) # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_OwnerClear
4 1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1] 4m | 1] BOOL continueAuthSession | Fixed value FALSE

The authorization digest for the returned parameters.
6 | 20 TCPA_AUTHDATA resAuth HMAC key: old ownerAuth.
Actions

1. The TPM verifies that the authHandle properly authorizes the owner.

2. After owner verification the TPM then checks the status of the TCPA PERSISTENT_FLAGS ->
DisableOwnerClear flag, if set the TPM returns TCPA_CLEAR_DISABLED.

Version 1.1a 1 December 2001

TCPA Main Specification Page 220

3. The TPM executes the TPM_Reset command. The TPM then destroys the SRK and any internal data
associated with the SRK. The TPM then destroys the TPM Ownership data.

The TPM unloads all loaded keys.

The TPM sets all DIR registers to their default value.

The TPM sets TCPA_PERSISTENT_FLAGS to their default values.

The result will be no Owner or SRK and the TPM is set to the state where it returns TCPA_NOSRK.

N o o &

Version 1.1a 1 December 2001

TCPA Main Specification

8.10.6 TPM_DisableOwnerClear

Start of informative comment:

Page 221

The DisableOwnerClear command disables the ability to execute the TPM_OwnerClear command
permanently. Once invoked the only method of clearing the TPM will require physical access to the TPM.

End of informative comment.

Type

TCPA protected capability; user must provide authorization as the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ| # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear
4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
2u | 20 | TCPA NONCE authLastNonceEven iIE]\;]zzrtlsnonce previously generated by TPM to cover
5 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
e AN | omen | Lot et e
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_DisableOwnerClear
4 1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1 4y 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
6 | 20 TCPA_AUTHDATA resAuth LﬁA?tfg;jzjngrfggft for the returned parameters.
Actions

1. The TPM verifies that the authHandle properly authorizes the owner.
2. The TPM sets the TCPA_PERSISTENT_FLAGS -> disableownerclear flag to TRUE.

3. The only mechanism that can clear the TPM is the TPM_ForceClear command. The TPM_ForceClear
command requires physical access to the TPM to execute.

Version 1.1a 1 December 2001

TCPA Main Specification Page 222

8.10.7 TPM_ForceClear

Start of informative comment:

The ForceClear command performs the Clear operation under physical access. This command is
available until the execution of the DisableForceClear, at which time any further invocation of this
command returns TCPA_CLEAR_DISABLED.

End of informative comment.
Type

TCPA protected capability; there must be some evidence of physical access to the platform present for
the TPM to verify.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
SZ | # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_ForceClear

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| Sz| # | Sz

1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions

1. The TPM checks for a prior execution of the TPM_DisableForceClear command. If executed, the
TPM will return TCPA_CLEAR_DISABLED.

2. After verification of physical access, the TPM performs a clear operation that has the same result as
the TPM_OwnerClear. After execution the result of this command is exactly like the
TPM_OwnerClear.

3. The implementation of the physical access requirement is a manufacturer option. The evidence of

physical access could be done by setting a pin high on a chip, or by sending special bus cycles or by
any other mechanism that provides evidence of physical access.

Version 1.1a 1 December 2001

TCPA Main Specification Page 223

8.10.8 TPM_DisableForceClear
Start of informative comment:

The DisableForceClear command disables the execution of the ForceClear command until the next
startup cycle. Once this command is executed, the TPM_ForceClear is disabled until another startup
cycle is run.

End of informative comment.
Type
TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
SZ | # SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_DisableForceClear

Outgoing Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Actions

The TPM sets the TCPA_VOLATILE_FLAGS.disableforceclear flag in the TPM that disables the
execution of the TPM_ForceClear command.

Version 1.1a 1 December 2001

TCPA Main Specification Page 224

8.11 The GetCapability Commands

The TPM MUST NOT return in response to the GetCapability command any information that identifies an
individual TPM.

Version 1.1a 1 December 2001

TCPA Main Specification

8.11.1 TPM_GetCapability

Type

TCPA protected capability

Incoming Operands and Sizes

Page 225

PARAM | HMAC -
Type Name Description
| Sz # | Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_GetCapability
4 4 TCPA_CAPABILITY_AREA | capArea Partition of capabilities to be interrogated
5 4 UINT32 subCapSize Size of subCap parameter —
6 | < BYTE[] subCap Further definition of information
Outgoing Operands and Sizes —
PARAM HMAC
Type Name Description
| SZ| # | SZ
1|2 TCPA_TAG tag | TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 UINT32 respSize The length of the returned capability response
5 | < BYTE[] resp The capability response
Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates
the response field and fills in the actual information.

CapArea subCap Response

TCPA_CAP_ORD ORDI NAL: Boolean value. TRUE indicates that
A val ue of conmand the TPM supports the ordinal.
or di ngh= FALSE indicates that the TPM does
see 4. not support the ordinal.

TCPA_CAP_ALG TCPA_ALG XX Boolean value. TRUE indicates that
A val ue of the TPM supports the algorithm,
TCPA THM | D: FALSE indicates that the TPM does
see 4. not support the algorithm.

TCPA_CAP_PID TCPA_PI D Boolean value. TRUE indicates that
A val ue of the TPM supports the protocol,
T@A_ﬁ_l (D) FALSE indicates that the TPM does
See 4. not support the protocol.

TCPA_CAP_PROPERTY TPM_CAP_PROP_PCR UINT32 value. Returns the number

Version 1.1a 1 December 2001

TCPA Main Specification Page 226

of PCR registers supported by the

TPM
TCPA_CAP_PROPERTY TPM_CAP_PRCP_DI R UINT32 value. Returns the number
of DIR registers supported by the
TPM.
TCPA_CAP_PROPERTY TCPA_CAP_PROP_NMANUFACTURE | UINT32 value. Returns the Identifier
R of the TPM manufacturer.
TCPA_CAP_PROPERTY TCPA_CAP_PROP_SLOTS UINT32 value. Returns the

maximum number of 2048 bit RSA
keys that the TPM is capable of
loading. This MAY vary with time
and circumstances.

TCPA_CAP_VERSION | gnor ed Returns the TCPA _VERSION
structure that identifies the version
of the TPM. See 4.5

TCPA_CAP_KEY_HANDLE | Ignored A TCPA_KEY_HANDLE_LIST
structure, describing the handles of
all keys that are currently loaded
into the TPM. See 4.9

TCPA_CAP_CHECK_LOAD | ALGORI THM A Boolean value. TRUE indicates
ED A val ue of that the TPM has enough memory
TCPA_KEY_PARMS: see 4.15 | available to load a key of the type
specified by ALGORITHM. FALSE
indicates that the TPM does not
have enough memory.

The permitted values of TCPA_CAP_PROP_MANUFACTURER and their meaning SHALL be defined in
platform specific TCPA specifications.

IDL Definitions of subCap

#defi ne TCPA_CAP_PROP_PCR 0x00000101
#defi ne TCPA_CAP_PROP_DI R 0x00000102
#def i ne TCPA_CAP_PROP_MANUFACTURER 0x00000103
#def i ne TCPA_CAP_PROP_SLOTS 0x00000104

Version 1.1a 1 December 2001

TCPA Main Specification Page 227

8.11.2 TPM_GetCapabilitySigned
Start of informative comment:

TPM_GetCapabilitySigned is almost the same as TPM_GetCapability. The differences are that the input
includes a challenge (a nonce) and the response includes a digital signature to vouch for the source of
the answer.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the
third party. A TPM-identity key may be suitable.

End of informative comment.
Type
TCPA protected capability; the user must supply authorization to use of parameter keyHandle

Incoming Operands and Sizes

PARAM HMAC

Type Name Description

| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_GetCapabilitySigned
4 4 TCPA_KEY_HANDLE keyHandle Iigi :ti?gls? of a loaded key that can perform digital
5 | 20| 25 | 20 | Tcea NONCE antiReplay nggz g;)ergvided to allow caller to defend against replay of
6 4 3s 4 | TCPA_CAPABILITY_AREA | capArea Partition of capabilities to be interrogated
7 4 4s 4 | UINT32 subCapSize Size of subCap parameter
8 | <>] 5s | <> | BYTE[] subCap Further definition of information
8 | 4 TCPA_AUTHHANDLE authHandle Zﬂfhﬁﬁil?iﬂzna“‘)” handle used for keyHandle

211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
9 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
10 1 | 4m | 1 }BOOL continueAuthSession | The continue use flag for the authorization handle
nE e e e

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ) # YA
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 228

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_GetCapabilitySigned
4 4 3s 4 | TCPA_VERSION version A properly filled out version structure.
5 4 4s 4 | UINT32 respSize The length of the returned capability response
6 [<> | 5 | <> | BYTE[] resp The capability response
7 4 6s 4 | UINT32 sigSize The length of the returned digital signature
8 [< | 7s | <> | BYTE[] sig The resulting digital signature.
9 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3n1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
10 1 4y 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
1 | 2 TCPA_AUTHDATA resAuth LﬁA?tC:;fzng(zggiufg the returned parameters.
Description
The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or

TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Actions

1. The TPM calls TPM_GetCapability passing the capArea and subCap fields and saving the resp field

asrl.

2. The TPM creates hl by taking a SHAL hash of the concatenation (rl || antiReplay).

The TPM validates the authority to use keyHandle

4. The TPM creates a digital signature of hl using the key in keyHandle and returns the result in sig.

Version 1.1a 1 December 2001

TCPA Main Specification Page 229

8.11.3 TPM_GetCapabilityOwner
Start of informative comment:

TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and the volatile
flags in a single operation.

The flags summarize many operational aspects of the TPM. The information represented by some flags is
private to the TPM Owner. So, for simplicity, proof of ownership of the TPM must be presented to retrieve
the set of flags. When necessary, the flags that are not private to the Owner can be deduced by Users via
other (more specific) means.

The normal TCPA authorization mechanisms are sufficient to prove the integrity of the response. No
additional integrity check is required.

End of informative comment.
Type
TCPA protected capability; user must provide authentication from the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
| SZ) # YA
1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapbilityOwner
3 4 TCPA_AUTHHANDLE authHandle The authorization handle used for Owner authorization.
2u | 20 | TCPA_NONCE authLastNonceEven iIi\gzrtlsnonce previously generated by TPM to cover
4 |1 20 | 311 | 20 § TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
6 | 20 TCPA_AUTHDATA ownerAuth The authorization digest for inputs and owner

authorization. HMAC key: OwnerAuth.

Outgoing Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # Sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
3 4 2s 4 | TCPA_VERSION version A properly filled out version structure.
4 4 3s 4 | UINT32 non_volatile_flags The current state of the non-volatile flags.
5 4 4s 4 | UINT32 volatile_flags The current state of the volatile flags.
6 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1 4yt 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
8 20 TCPA_AUTHDATA resAuth The authorization digest for the returned parameters.

Version 1.1a 1 December 2001

TCPA Main Specification Page 230

HMAC key: OwnerAuth.

Description
For 31>=N>=0

e Bit-N of the TCPA_PERSISTENT_FLAGS structure is the Nth bit after the opening bracket in the
definition of TCPA_PERSISTENT_FLAGS in the version of the specification indicated by the
parameter “version”. The bit immediately after the opening bracket is the 0" bit.

* Bit-N of the TCPA_VOLATILE_FLAGS structure is the Nth bit after the opening bracket in the
definition of TCPA_VOLATILE_FLAGS in the version of the specification indicated by the
parameter “version”. The bit immediately after the opening bracket is the 0™ bit.

» Bit-N of non_volatile_flags corresponds to the Nth bit in TCPA_PERSISTENT_FLAGS.

* Bit-N of volatile_flags corresponds to the Nth bit in TCPA_VOLATILE_FLAGS.
Actions

1. The TPM validates that the TPM Owner authorizes the command.

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state as the
corresponding bit in TCPA_PERSISTENT_FLAGS. Bits in non_volatile_flags for which there is no
corresponding bit in TCPA_PERSISTENT_FLAGS are set to zero.

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the
corresponding bit in TCPA_VOLATILE_FLAGS. Bits in volatile_flags for which there is no
corresponding bit in TCPA_VOLATILE_FLAGS are set to zero.

4. The TPM generates the parameter “version”.

The TPM returns non_volatile_flags, volatile_flags and version to the caller.

Version 1.1a 1 December 2001

TCPA Main Specification Page 231

8.12 Audit Commands

Each command ordinal has an indicator in non-volatile TPM memory indicating if executing the command
will result in the generation of an audit event.

The audit event includes the command ordinal and the return code from the command.

The digest value SHALL be SHA1 (previous value || command ordinal || return code). The digest value
register SHALL have a starting value of NULLS.

Updating of auditDigest MAY cease when TCPA VOLATILE_FLAGS -> deactivated is TRUE. This is

because a deactivated TPM performs no useful service until a platform is rebooted, at which point
auditDigest is reset.

Version 1.1a 1 December 2001

TCPA Main Specification Page 232

8.12.1 TPM_GetAuditEvent

Start of informative comment:

The TPM uses this command to get the audit information from the TPM.
End of informative comment.

Type

TCPA protected capability.

Incoming Operands and Sizes

PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal: TPM_ORD_GetAuditEvent

Outgoing Operands and Sizes

PARAM | HMAC -
Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 TCPA_COMMAND_CODE | cmdOrd Last audited command executed
5 4 UINT32 cmdReturnCode Return code for cmdOrd
6 | 20 TCPA_DIGEST auditDigest Log of all audited events
Actions

1. The TPM sets cmdOrd to the ordinal of the last audited function.
2. The TPM sets cmdReturnCode to the return code for the last audited function.

3. The TPM sets auditDigest to the extended digest value of all audited functions.

Version 1.1a 1 December 2001

TCPA Main Specification

8.12.2 TPM_GetAuditEventSigned

Start of informative comment:

Page 233

This command returns the same information as the TPM_GetAuditEvent but the result is signed.

End of informative comment.
Type
TCPA protected capability; user must provide authentication to use the key pointed to by keyHandle.

Incoming Operands and Sizes

PARAM HMAC -
Type Name Description

| SZ # Sz

1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_GetAuditEventSigned

4 4 TCPA_KEY_HANDLE keyHandle ligi :ti?gf of a loaded key that can perform digital

5 120] 2s | 20 | TCPA_NONCE antiReplay A nonce to prevent antiReplay attacks

6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for key authorization.

211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs

7 120] 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
8 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
3E i e
Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| SZ # SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditEventSigned

4 4 3s 4 TCPA_COMMAND_CODE cmdOrd Last audited command executed

5 4 4s 4 UINT32 cmdReturnCode Return code for cmdOrd

6 | 20 | 5s 20 | TCPA_DIGEST auditDigest Log of all audited events

7 4 6s 4 UINT32 ordSize The size of the ordinal list

8 | <> Ts <> | BYTE] ordinalList The list of ordinals that are being audited

9 4 8s 4 UINT32 sigSize The size of the sig parameter

10 | <> | 9s <> | BYTE] sig The signature of the area

11 | 20 | 212 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

Version 1.1a 1 December 2001

TCPA Main Specification Page 234

311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle

121 1§ 4n 1 BOOL ﬁ)onntmueAuthSess Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.
13 | 20 TCPA_AUTHDATA resAuth HMAC key: key.usageAuth.
Actions
1. The TPM sets cmdOrd to the ordinal of the last audited function.
2. The TPM sets cmdReturnCode to the return code for the last audited function.
3. The TPM sets auditDigest to the extended digest value of all audited functions.
4. The TPM sets ordinalList to a list of all audited functions. This list is a UINT32 of command ordinals.
5. Create a d1 by taking the SHA1 of (ordinal || cmdOrd || cmdReturnCode || auditDigest || ordinalList ||
antiReplay)

6. Create a digital signature of d1 by using the signature scheme for keyHandle.

Return the signature in the sig parameter

Version 1.1a 1 December 2001

TCPA Main Specification

8.12.3 TPM_SetOrdinalAuditStatus

Start of informative comment:

Page 235

Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.

End of informative comment.

Type

TCPA protected capability; the user must show authorization from the TPM Owner to execute the

command.

Incoming Operands and Sizes

PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1 COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus
4 4 2s 4 | TCPA_COMMAND_CODE | ordinalToAudit The ordinal whose audit flag is to be set
5 1 3s 1 | BOOL auditState Value for audit flag
6 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
2H1 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
7 120] 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
8 1 |4m | 1 | BOOL continueAuthSession | The continue use flag for the authorization handle
3E CPATHONA o | e ki
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # Sz
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL1 COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus
4 |1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1 1 4 1 | BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
6 | 20 TCPA_AUTHDATA resAuth Lr,{/eer%Jtl?:;:iz;x(szr(:Sg]s.t for the returned parameters.

Descriptions

Actions

1. The TPM authenticates the command using the TPM Owner authentication. If authentication
unsuccessful the TPM returns TCPA_FAIL.

Version 1.1a 1 December 2001

TCPA Main Specification Page 236

2. The TPM sets the state of the non-volatile flag for the given ordinal to the indicated state. The TPM
also returns the state in the response.

Version 1.1a 1 December 2001

TCPA Main Specification

8.12.4 TPM_GetOrdinalAuditStatus

Start of informative comment:

Get the status of the audit flag for the given ordinal.

End of informative comment.

Type

TCPA protected capability.

Incoming Operands and Sizes

Page 237

PARAM | HMAC o
Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus
4 4 TCPA_COMMAND_CODE | ordinalToQuery The ordinal whose audit flag is to be queried

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description
| SZ) # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 1 BOOL State Value of audit flag for ordinalToQuery
Actions

The TPM returns the Boolean value for the given ordinal. The value is TRUE if the command is being

audited.

Version 1.1a 1 December 2001

TCPA Main Specification Page 238

8.12.5 Effect of audit failing after successful completion of a command
Start of informative comment:

An operation could complete successfully and then when the TPM attempts to audit the command the
audit process could have an internal error that forces the TPM to return an error.

This section indicates what the TPM must do in this case in addition to setting the state that requires the
TPM to return TPM_FAILEDSELFTEST

End of informative comment.

When after successful completion of an operation, and in performing the audit process, the TPM has an
internal failure (unable to write, SHA failure etc.) the TPM MUST set the internal TPM state such that the
TPM returns the TPM_FAILEDSELFTEST error. The TPM MUST return TCPA_AUDITFAILURE for the
current command.

If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST always return
TPM_FAILEDSELFTEST for every command other than TPM_GetTestResult. This state must persist
regardless of power cycling, the execution of TPM_Init or any other actions.

If the TPM can recover in any way after the failure of an audit operation, then the TPM MUST take the
actions stated in the following table after setting the failure state.

O di nal Ef fect when Audit Fails

TPM ORD O AP No action — session deleted on TPMIN T

TPM ORD OSAP No action — session deleted on TPMIN T

TPM_ORD_ChangeAut h No action — changed bl ob not returned so
nothing to delete

TPM_ORD _TakeOwner shi p TPMreturns to state where there is no
TPM Oaner .

TPM ORD_ChangeAut hAsynft ar t No action — session deleted on TPMIN T

TPM ORD ChangeAut hAsynFi ni sh No action — session deleted on TPMIN T

TPM_ORD_ChangeAut hOaner The TPM MUST revert back to the previous
aut hori zati on val ue

TPM ORD _Ext end I nval i date PCR by extending 20 bytes of
0Oxa5 to the PCR

TPM ORD Pcr Read No action

TPM ORD_Quot e No action

TPM ORD_Seal No action

TPM_ORD_Unseal Ensure that unseal ed data is made
unavai |l abl e

TPM ORD DirWiteAuth Invalidate the DOR by witing 20 bytes
of Oxab into the specified DR

TPM ORD Di r Read No action

TPM ORD_UnBi nd Ensure that unbound data is made
unavai | abl e

TPM_ORD_Cr eat eW apKey No action — key not returned in blob so
TPM can just | ose the new key

TPM ORD LoadKey Ensure that the key is not avail able

TPM ORD_Get PubKey No action — nothing returned

TPM_ORD_Evi ct Key No action — key is evicted so no

security issues

TPM ORD Creat eM grati onBl ob No action — no blob returned

Version 1.1a 1 December 2001

TCPA Main Specification

Page 239

TPM _ORD_ReW apKey

action — no bl ob returned

TPM ORD Convert M grationBl ob

TPM ORD _Aut hori zeM gr at i onKey

No
No action — no bl ob returned
No action — no bl ob returned

TPM ORD Cr eat eMai nt enanceAr chi ve

No action — no blob returned

TPM ORD _LoadMai nt enanceAr chi ve

Set the TPMinternal state such that the
TPM returns TPM NOSRK. This requires the
caller to resubnmt the maintenance
archive for it to be active.

TPM ORD Ki | | Mai nt enanceFeat ure

No acti on

TPM ORD _LoadManuMai nt Pub

The TPMreturns to a state where no
mai nt enance public key has been | oaded

TPM ORD ReadManuMai nt Pub

No action — no blob returned

TPM ORD Certi f yKey

No action — no bl ob returned

TPM ORD_Si gn No action — no bl ob returned
TPM ORD_Get Random No action — nothing returned
TPM ORD Sti r Random No action — RNG still secure
TPM ORD Sel f Test Ful | No action
TPM ORD Sel f Test Start up No action
TPM ORD CertifySel f Test No action
TPM ORD_Cont i nueSel f Test No action
TPM ORD Get Test Resul t No action
TPM ORD Reset No action
TPM ORD Omner O ear No action
TPM ORD _Di sabl eOwner C ear No action
TPM ORD For ced ear No action
TPM _ORD _Di sabl eFor ced ear No action
TPM ORD _Cet Capabi |l itySi gned No action
TPM ORD Cet Capability No action
TPM ORD Cet Capabi | i t yOaner No action
TPM ORD Owner Set Di sabl e No action
TPM ORD_Physi cal Enabl e No action
TPM ORD_Physi cal Di sabl e No action
TPM ORD_Set Owner I nst al | No action
TPM ORD Physi cal Set Deacti vat ed No action
TPM ORD_Set TenpDeact i vat ed No action

TPM ORD_Cr eat eEndor senment KeyPai r

This is a dead TPM It has failed it’'s
startup snoke test. It should not |eave
the factory floor.

TPM ORD Makel dentity

No action — blob not returned so key is
| ost

TPM_ORD Activateldentity

No action — credential not returned but
blob is still available for the caller
to resubmt to the TPMwhen it is
functi onal

TPM ORD ReadPubek No action
TPM ORD_Owner ReadPubek No action
TPM ORD _Di sabl ePubekRead No action

Version 1.1a 1 December 2001

TCPA Main Specification

Page 240

TPM ORD Get Audi t Event No action
TPM ORD Cet Audi t Event Si gned No action
TPM ORD_Get Or di nal Audi t St at us No action
TPM ORD _Set Or di nal Audi t St at us No action
TPM ORD Ter m nat e_Handl e No action
TPM ORD Init No action
TPM ORD SavesSt at e No action
TPM ORD Startup No action — The TPMis disabled, all

save states are invalidated so only non-

vol atile keys are |left.
TPM ORD Set Redi rection No action
TPM ORD_SHA1St art No action
TPM ORD SHAlUpdat e No action
TPM ORD SHA1Conpl et e No action
TPM ORD SHA1Conpl et eExt end No action

TPM_ORD Fi el dUpgr ade

Set TCPA PERSI STENT FLAGS - >
Fai | edFi el dUpgrade to TRUE. This flag
sets the disabled bit to TRUE on each

TPM | ni

t. The only way to set the

Fai | edFi el dUpgrade flag back to FALSE is
to successfully conplete a Fiel dUpgrade.

Version 1.1a 1 December 2001

TCPA Main Specification Page 241

8.13 Enabling Ownership

Version 1.1a 1 December 2001

TCPA Main Specification

8.13.1 TPM_SetOwnerlinstall

Type

Page 242

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|Sz) # |SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_SetOwnerlnstall
4 1 BOOL state State to which ownership flag is to be set.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
|SZ)| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Action

1. If the TPM has a current owner, this command immediately returns with TCPA_SUCCESS.

2. The TPM validates the assertion of physical access. The TPM then sets the value of
TCPA_PERSISTENT_FLAGS -> ownership to the value in state.

Version 1.1a 1 December 2001

TCPA Main Specification Page 243

8.14 Enabling a TPM

Version 1.1a 1 December 2001

TCPA Main Specification

8.14.1 TPM_OwnerSetDisable

Type

Page 244

TCPA protected capability; the TPM Owner must provide authorization.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ) # Sz
1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable
4 1 2s 1 | BOOL disableState Value for disable state — enable if TRUE
5 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

2u | 20 | TCPA NONCE authLastNonceEven iIE]\F;zzrtlsnonce previously generated by TPM to cover
6 | 20 | 3w [20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
7 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle

The authorization digest for inputs and owner
812 TCPA_AUTHDATA ownerAuth authorization. HMAC key: ownerAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description

| SZ) # YA
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_OwnerSetDisable
4 1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1 4yt 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active

The authorization digest for the returned parameters.
6 | 20 TCPA_AUTHDATA resAuth HMAC key: ownerAuth.
Action

1. The TPM SHALL authenticate the command as coming from the TPM Owner. If unsuccessful, the
TPM SHALL return TCPA_BAD_AUTH.

2. The TPM SHALL set the TCPA_PERSISTENT_FLAGS -> disable flag to the value in the disableState
parameter.

Version 1.1a 1 December 2001

TCPA Main Specification

8.14.2 TPM_PhysicalDisable

Type

Page 245

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|Sz) # |SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_PhysicalDisable
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
|SZ)| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Action

The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to TRUE. The TPM while executing

this command MUST obtain assurance from a physical method that operation of this command is
authorized.

The TPM manufacturer MAY implement this command not as a response to a message block but as a
response to a physical action, for instance, the acceptance of a special bus cycle or setting a pin high.

Version 1.1a 1 December 2001

TCPA Main Specification Page 246

8.14.3 TPM_PhysicalEnable
Type

TCPA protected capability; there MUST be unambiguous evidence of the presence of physical access to
the platform for the TPM to verify.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
| SZ| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_PhysicalEnablel

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ) # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action
The TPM SHALL set the TCPA_PERSISTENT_FLAGS.disable value to FALSE.

In order to execute this command, the TPM MUST obtain unambiguous assurance that operation of this
command is authorized by physical presence at the platform. The command MAY be initiated by the
presentation to a TPM of a message block with the above input parameters, provided that the message
block occurs while the TPM is presented with unambiguous assurance that operation of this command is
authorized by physical presence at the platform.

Unambiguous assurance that operation of this command is authorized by a physical action at the platform
MAY be communicated to a TPM using a special bus cycle that is impossible for software to create, or
asserting a single electrical signal that is impossible for software to create, for example.

It SHALL be impossible to subvert this command to a TPM by the execution of instructions in a computing
engine on the platform.

Version 1.1a 1 December 2001

TCPA Main Specification Page 247

8.15 Activating a TPM

Version 1.1a 1 December 2001

TCPA Main Specification

8.15.1 TPM_PhysicalSetDeactivated

Type

Page 248

TCPA protected capability; there must be some evidence of physical access present for the TPM to verify.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|Sz) # |SZ
1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated
4 1 BOOL state State to which deactivated flag is to be set.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
|SZ)| # | SZ
1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
Action

The TPM while executing this command MUST obtain assurance from a physical method that operation
of this command is authorized.

The TPM SHALL set the TCPA PERSISTENT_FLAGS.deactivated flag to the value in the state
parameter.

Version 1.1a 1 December 2001

TCPA Main Specification

8.15.2 TPM_SetTempDeactivated
Type
TCPA protected capability.

Incoming Operands and Sizes

Page 249

PARAM | HMAC -
Type Name Description

| SZ| # | SZ

1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_SetTempDeactivated

Outgoing Operands and Sizes

PARAM | HMAC o
Type Name Description

|SZ)| # | SZ

1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

Action

The TPM SHALL set the TCPA_VOLATILE_FLAGS.deactivated flag to the value TRUE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 250

8.16 TPM_FieldUpgrade

Start of informative comment:

The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is in the field.
Given the varied nature of TPM implementations there will be numerous methods of performing an
upgrade of the protected capabilities. This command, when implemented, provides a manufacturer
specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this command. The
command may be more than one command and actually a series of commands.

The IDL definition is to create an ordinal for the command, however the remaining parameters are
manufacturer specific.

End of informative comment.
IDL Definition

TCPA _RESULT TPM Fi el dUpgr ade(
[in, out] TCPA AUTH* owner Aut h,
)
Type
TCPA protected capability; the TPM Owner must authenticate the command. This is an optional
command and a TPM is not required to implement this command in any form.

Parameters

Type Name Description

TCPA_AUTH owner Aut h Authentication from TPM owner to execute command
Remaining parameters are manufacturer specific

Actions

The TPM SHALL perform the following when executing the command:
1. Validate the TPM Owners authorization to execute the command

2. Validate that the upgrade information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed
using a 2048 bit RSA key.

Validate that the upgrade target is the appropriate TPM model and version.
4. Process the upgrade information and update the protected capabilities

Set the TCPA_PERSISTENT_DATA.revMajor and TCPA_PERSISTENT_DATA.revMinor to the
values indicated in the upgrade. The selection of the value is a manufacturer option. The values
MUST be monotonically increasing. Installing an upgrade with a major and minor revision that is less
than currently installed in the TPM is a valid operation.

6. Setthe TCPA_VOLATILE_FLAGS.deactivated to TRUE.
Descriptions

The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field
upgrade. The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade
process. The upgrade process MAY use a TPM Identity to deliver upgrade information to specific TPM'’s.

Version 1.1a 1 December 2001

TCPA Main Specification Page 251

The upgrade process can only change protected capabilities.

The upgrade process can only access data in shielded locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TCPA specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Version 1.1a 1 December 2001

TCPA Main Specification Page 252

8.17 TPM_SetRedirection

Informative comment

‘Redirected” keys enable the output of a TPM to be directed to non-TCPA security functions in the
platform, without exposing that output to non-security functions.

It is sometimes desirable to direct the TPM’s output directly to specific platform functions without exposing
that output to other platform functions. To enable this, the key in a leaf node of TCPA Protected Storage
can be tagged as a “redirect” key. Any plaintext output data secured by a redirected key is passed by the
TPM directly to specific platform functions and is not interpreted by the TPM.

Since redirection can only affect leaf keys, redirection applies to: TPM_Unbind, TPM_Unseal,
TPM_Quote, TPM_Sign

End of informative comments
Type
TCPA protected capability; the TPM MAY implement this command. The user MUST supply authorization

to use the key pointed to by keyHandle.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz

1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

. Command ordinal, fixed value of
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal TPM_ORD_SetRedirection
4 4 TCPA KEY HANDLE keyHandle _The keyHandIg |delnt|f|er of a loaded key that can
- = implement redirection.

5 4 2s 4 | UINT32 C1 Manufacturer parameter

6 4 3s 4 | UINT32 C2 Manufacturer parameter

7 4 TCPA AUTHHANDLE authHandle The agtholnzatlon handle used for keyHandle

- authorization
211 | 20 | TCPA_NONCE authLastNonceEven | Even nonce previously generated by TPM to cover inputs
8 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
. The authorization digest that authorizes the use of

1020 TCPA_AUTHDATA privAuth keyHandle. HMAC key: key.usageAuth
Outgoing Operands and Sizes

PARAM HMAC o

Type Name Description

| SZ) # SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_SetRedirection

Version 1.1a 1 December 2001

TCPA Main Specification Page 253

4 |1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
311 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1] 4m | 1] BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
The authorization digest for the returned parameters.
6 | 20 TCPA_AUTHDATA resAuth HMAC key: key.usageAuth

Action
1. The TPM SHALL validate the authorization to use the key pointed to by keyHandle.

2. The TPM SHALL verify that the key pointed to by keyHandle has the redirection flag set to TRUE. If
FALSE the TPM SHALL return TCPA_FAIL.

3. The TPM SHALL set the key handle redirection parameters according to the values in parameters cl1
and c2.

4. A key that is tagged as a “redirect” key MUST be a leaf key in the TCPA Protected Storage blob
hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key.

5. Ouput data that is the result of a cryptographic operation using the private portion of a “redirect” key:
a. MUST be passed to an alternate output channel
b. MUST NOT be passed to the normal output channel
c. MUST NOT be interpreted by the TPM.

6. The authorization response returns to the caller.

Version 1.1a 1 December 2001

TCPA Main Specification Page 254

8.18 Key and Session Management

Version 1.1a 1 December 2001

TCPA Main Specification Page 255

8.18.1 TPM_SaveKeyContext
Start of informative comment:

SaveKeyContext saves a loaded key outside the TPM. After creation of the key context blob the TPM
automatically releases the internal memory used by that key. The format of the key context blob is
specific to a TPM.

End of informative comment.

Type
TCPA optional function; TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|SZ) # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_SaveKeyContext
4 4 TCPA_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

The actual size of the outgoing key context blob. If the

4 4 UINT32 keyContextSize command fails the value will be 0
5 | < BYTE[] keyContextBlob | The key context blob.
Description

This command allows saving a loaded key outside the TPM. After creation of the KeyContextBlob, the
TPM automatically releases the internal memory used by that key. The format of the key context blob is
specific to a TPM.

A TCPA protected capability belonging to the TPM that created a key context blob MUST be the only
entity that can interpret the contents of that blob. If a cryptographic technique is used for this purpose, the
level of security provided by that technigue SHALL be at least as secure as a 2048 bit RSA algorithm.
Any secrets (such as keys) used in such a cryptographic technique MUST be generated using the TPM'’s
random number generator. Any symmetric key MUST be used within the power-on session during which it
was created, only.

A key context blob SHALL enable verification of the integrity of the contents of the blob by a TCPA
protected capability.

A key context blob SHALL enable verification of the session validity of the contents of the blob by a TCPA
protected capability. The method SHALL ensure that all key context blobs are rendered invalid if power to
the TPM is interrupted.

Version 1.1a 1 December 2001

TCPA Main Specification

8.18.2 TPM_LoadKeyContext

Start of informative comment:

Page 256

LoadKeyContext loads a key context blob into the TPM previously retrieved by a SaveKeyContext call.
After successful completion the handle returned by this command can be used to access the key.

End of informative comment.
Type
TCPA optional function; TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND _CODE | ordinal Command ordinal, fixed value of TPM_ORD_LoadKeyContext
4 4 UINT32 keyContextSize | The size of the following key context blob.
5 | <> BYTE[] keyContextBlob | The key context blob.
Outgoing Operands and Sizes
PARAM | HMAC o
Type Name Description
|SZ) # | SZ
1|2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4|4 TCPA KEY HANDLE keyHandle The handle assigned to the key after it has been
- - successfully loaded.

Description

This command allows loading a key context blob into the TPM previously retrieved by a
TPM_SaveKeyContext call. After successful completion the handle returned by this command can be
used to access the key.

The contents of a key context blob SHALL be discarded unless the contents have passed an integrity
test. This test SHALL (statistically) prove that the contents of the blob are the same as when the blob was
created.

The contents of a key context blob SHALL be discarded unless the contents have passed a session
validity test. This test SHALL (statistically) prove that the blob was created by this TPM during this power-
on session.

Version 1.1a 1 December 2001

TCPA Main Specification Page 257

8.19 Authorization Context Management

Version 1.1a 1 December 2001

TCPA Main Specification Page 258

8.19.1 TPM_SaveAuthContext
Start of informative comment:

SaveAuthContext saves a loaded authorization session outside the TPM. After creation of the
authorization context blob, the TPM automatically releases the internal memory used by that session. The
format of the authorization context blob is specific to a TPM.

End of informative comment.

Type
TCPA optional function; TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|SZ) # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_SaveAuthContext
4 4 TCPA_AUTHHANDLE authandle Authorization session which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

The actual size of the outgoing authorization context blob. If the

4 4 UINTS32 autnContextSize command fails the value will be 0.
5 | < BYTE[] authContextBlob | The authorization context blob.
Description

This command allows saving a loaded authorization session outside the TPM. After creation of the
authContextBlob, the TPM automatically releases the internal memory used by that session. The format
of the authorization context blob is specific to a TPM.

A TCPA protected capability belonging to the TPM that created an authorization context blob MUST be
the only entity that can interpret the contents of that blob. If a cryptographic technique is used for this
purpose, the level of security provided by that technique SHALL be at least as secure as a 2048 bit RSA
algorithm. Any secrets (such as keys) used in such a cryptographic technique MUST be generated using
the TPM’s random number generator. Any symmetric key MUST be used within the power-on session
during which it was created, only.

An authorization context blob SHALL enable verification of the integrity of the contents of the blob by a
TCPA protected capability.

An authorization context blob SHALL enable verification of the session validity of the contents of the blob
by a TCPA protected capability. The method SHALL ensure that all authorization context blobs are
rendered invalid if power to the TPM is interrupted.

Version 1.1a 1 December 2001

TCPA Main Specification Page 259

8.19.2 TPM_LoadAuthContext
Start of informative comment:

LoadAuthContext loads an authorization context blob into the TPM previously retrieved by a
SaveAuthContext call. After successful completion the handle returned by this command can be used to
access the authorization session.

End of informative comment.
Type
TCPA optional function; TCPA protected capability.

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal, fixed value of TPM_ORD_LoadAuthContext
4 4 UINT32 authContextSize | The size of the following authorization context blob.
5 | <> BYTE[] authContextBlob | The authorization context blob.

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description
SZ # SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 4 TCPA_KEY_HANDLE authHandle The handle assigned to the authorization session after it has
been successfully loaded.

Description

This command allows loading an authorization context blob into the TPM previously retrieved by a
TPM_SaveAuthContext call. After successful completion the handle returned by this command can be
used to access the authorization session.

The contents of an authorization context blob SHALL be discarded unless the contents have passed an
integrity test. This test SHALL (statistically) prove that the contents of the blob are the same as when the
blob was created.

The contents of an authorization context blob SHALL be discarded unless the contents have passed a
session validity test. This test SHALL (statistically) prove that the blob was created by this TPM during
this power-on session.

Version 1.1a 1 December 2001

TCPA Main Specification Page 260

9. Subsystem Credentials

9.1 Introduction

All credentials MUST use the TCPA_VERSION structure.

9.2 Endorsement

The PRIVEK and PUBEK MUST be accessed only by protected capabilities whose definition explicitly
requires access to those keys.

The PRIVEK and PUBEK MAY be created by a process other than the wuse of
TPM_CreateEndorsementKeyPair. If so, the process MUST result in a TPM and endorsement key whose
properties are the same as those of a genuine TPM and an endorsement key created by execution of
TPM_CreateEndorsementKeyPair in that TPM.

e The process MUST result in the same TPM state as that created by execution of
TPM_CreateEndorsementKeyPair.

» The process MUST guarantee correct generation, cryptographic strength, uniqueness, privacy,
and installation into a genuine TPM, of the endorsement key.

« The TPME, when creating the Endorsement Certificate, MUST be satisfied that the described
endorsement key does exist in a genuine TPM and was installed by a process that met or
exceeded the assurances provided by a genuine TPM performing
TPM_CreateEndorsementKeyPair.

* The process MUST be defined in the TOE of the security target in use to evaluate the TPM

Version 1.1a 1 December 2001

TCPA Main Specification

9.2.1 TPM_CreateEndorsementKeyPair

Type

TCPA protected capability

Incoming Operands and Sizes

Page 261

PARAM HMAC o
Type Name Description

| SZ) # | SZ

1| 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair
4 120 TCPA_NONCE antiReplay Arbitrary data

5 | o TCPA_KEY_PARMS keyinfo Inforr_nanon about key to be created, this includes all

algorithm parameters

Outgoing Operands and Sizes

PARAM HMAC

Type Name Description

| Sz # | SZ

1 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.

4 | <> TCPA_PUBKEY pubEndorsementKey | The public endorsement key

5120 TCPA_DIGEST checksum Hash of pubEndorsementKey and antiReplay
Description

Type Name Description

TCPA _STORE_A | PRIVEK This SHALL be the private key of the endorsement key pair.
SYMKEY

TCPA_PUBKEY PUBEK This SHALL be the public key of the endorsement key pair.

The PRIVEK SHALL exist only in a TCPA-shielded location.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has
taken ownership of that platform, it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Actions

The first valid TPM_CreateEndorsementKeyPair command received by a TPM SHALL

1. Validate the keylnfo parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For
interoperability the key length SHOULD be 2048

Version 1.1a 1 December 2001

TCPA Main Specification Page 262

b. If the algorithm type is other than RSA the strength provided by the key MUST be
comparable to RSA 2048

c. The other parameters of keylnfo (signatureScheme etc.) are ignored.

2. Create a key pair called the “endorsement key pair” using a TCPA-protected capability. The type and
size of key are that indicated by keylnfo

Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay)
Store the PRIVEK.

Export the data structures PUBEK and checksum

Set TCPA_PERSISTENT_FLAGS -> CEKPUsed to TRUE

Subsequent calls to TPM_CreateEndorsementKeyPair SHALL return code TCPA_FAIL.

L

Version 1.1a 1 December 2001

TCPA Main Specification

9.2.2 TPM_ReadPubek

Type
TCPA protected capability

Incoming Operands and Sizes

Page 263

PARAM | HMAC o
Type Name Description
| Sz # | Sz
1] 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_ReadPubek
4 120 TCPA_NONCE antiReplay Arbitrary data
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ| # | SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 TCPA_RESULT returnCode The return code of the operation. See section 4.3.
4 | <> TCPA_PUBKEY pubEndorsementKey | The public endorsement key
5120 TCPA_DIGEST checksum Hash of pubEndorsementKey and antiReplay
Description

This command returns the PUBEK.

Actions
The TPM_ReadPubek command SHALL
1.

2
3.
4

If TCPA_PERSISTENT_FLAGS -> readPubek is FALSE return TCPA_DISABLED_CMD.
If no EK is present the TPM MUST return TCPA_NO_ENDORSEMENT

Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay).
Export the PUBEK and checksum.

Version 1.1a 1 December 2001

TCPA Main Specification

9.2.3 TPM_DisablePubekRead

Start of informative comment:

Page 264

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command sets the non-
volatile flag so that the TPM_ReadPubek command always returns TCPA_DISABLED_CMD.

End of informative comment.

Type

TCPA protected capability; the user must present authorization from the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ # Sz
1 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead
4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.

2u | 20 | TCPA NONCE authLastNonceEven iIE]\;]zzrtlsnonce previously generated by TPM to cover
5 | 20 | 3w | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1] 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle

The authorization digest for inputs and owner
T TCPA_AUTHDATA ownerAuth authorization. HMAC key: ownerAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description

| SZ) # SZ
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_DisablePubekRead
4 1 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
5 1 4yt 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active

The authorization digest for the returned parameters.
6 | 20 TCPA_AUTHDATA resAuth HMAC key: ownerAuth.
Actions

This capability sets the TCPA_PERSISTENTFLAGS -> readPubek flag to FALSE.

Version 1.1a 1 December 2001

TCPA Main Specification

9.2.4 TPM_OwnerReadPubek

Page 265

Type
TCPA protected capability; caller must supply authorization from the TPM Owner
Incoming Operands and Sizes
PARAM HMAC -
Type Name Description
| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RQU_AUTH1_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek
4 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
2u | 20 | TCPA_NONCE authLastNonceEven iIE]\F;zzrtlsnonce previously generated by TPM to cover
5 120] 312 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1) 4m | 1] BOOL continueAuthSession | The continue use flag for the authorization handle
3E CPAATHONTA [omenan | Le Mo o
Outgoing Operands and Sizes
PARAM HMAC
Type Name Description
| SZ # SZ
1] 2 TCPA_TAG tag TPM_TAG_RSP_AUTHL COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_OwnerReadPubek
4 | <> | 3s | <> | TCPA PUBKEY pubEndorsementKey | The public endorsement key
5 |20] 2w | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
6 1 4yt 1 BOOL continueAuthSession | Continue use flag, TRUE if handle is still active
7 1 20 TCPA_AUTHDATA resAuth Lr’:/ele%th;zizgxgzrfggls‘t for the returned parameters.
Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL
1. Validate the TPM Owner authorization to execute this command
2. Export the PUBEK

Version 1.1a 1 December 2001

TCPA Main Specification Page 266

9.3 Generating a Trusted Platform Module Identity

Version 1.1a 1 December 2001

TCPA Main Specification Page 267

Obtaining a TPM identity
< make_TPM identity(P_CA _identity,
1 (id-label, identity_authorisation, alg_id, alg_param)
identity binding
¢ collate_identity_request(....)
E(P_CA_identity, session-key_1)
_ » E(session_key_1, TPM-identity-key,
id-label, alg-id, alg-param, identity_binding,

endor sement-cred, platform-cred,
confor mance-cr ed)

v

A

3 (contact_privacy CA

Y

< activate TPM _identity (
- E(endorsement_key,digest(id-key), session_key 2))

v

session_key_2
< recover_TPM _identity(session_key_2,

5 < E(session_key_2, TPM_identity_credentials))
TPM _identity_credentials

v

Privacy
TPM SS Owner
CA

Version 1.1a 1 December 2001

TCPA Main Specification Page 268

be trusted to check that a TPM is genuine and to correctly state that a credential describes a particular
public key, and a genuine TPM checks that the public key belongs to that TPM before releasing the
credential.

The reason for including the hash of the public key of the Privacy CA inside identity-binding signature is to
prevent a rogue obtaining attestation from multiple Privacy CAs. The identity-binding signature creation is
an atomic operation performed at the same time as the key pair creation, and therefore the TPM cannot
be coerced into creating a version of the identity-binding signature with the same keys but a different
Privacy CA public key.

The Identity-binding signature is one of the few operations that are permitted to use the private
(signature) key of a TPM identity. A version of identity binding with a different Privacy CA public key can't
be reproduced by commands from outside the TPM, because the TPM will refuse to sign arbitrary data
with a private (signature) key of a TPM identity.

The process deliberately has certain characteristics:
For example, during TPM_Makeldentity,

e The atomic generation of the key pair and encrypted identity binding information prevents the
creation by a TPM of duplicate identity binding information while avoiding the need for a TPM to
retain state.

e Signing with the private (signature) key of a TPM identity prevents the creation of duplicate
“identity_binding” information outside a TPM.

« When a Privacy CA receives data, it can use the data describing the new TPM identity to check that
the request for attestation (if it came from a genuine TPM) is a unique request, use the endorsement
credentials to check that a stated TPM is a genuine TPM, and use the platform credentials and
conformance credentials to check that a stated platform is a genuine Trusted Platform. The Privacy
CA cannot, however, verify that the new TPM identity was actually generated by that genuine TPM.
On the assumption, however, that the new TPM identity was actually generated by a genuine TPM,
the Privacy CA generates TPM_IDENTITY_CREDENTIALSs and a statement that expresses a binding
between that TPM_IDENTITY _CREDENTIAL and the new TPM identity. The Privacy CA then
encrypts this information so that it can be recovered only by the genuine TPM described by the
endorsement credentials.

e During TPM_ Activateldentity, the genuine TPM checks that the encrypted
TPM_IDENTITY_CREDENTIAL is bound to one of the TPM’s identities and enables decryption of
TPM_IDENTITY_CREDENTIAL only if that association exists. This last stage is critical but subtle,
since the TPM has insufficient computing power to parse TPM_IDENTITY_CREDENTIAL and relies
on the “statement” from the Privacy CA that a TPM_IDENTITY_CREDENTIAL is associated with a
given identity.

e The entire process depends critically on the trustworthiness of the Privacy CA. If the Privacy CA is
trustworthy, a plaintext TPM_IDENTITY_CREDENTIAL recovered by a TPM describes an identity of
a genuine TPM. Otherwise, a TPM_IDENTITY_CREDENTIAL cannot be trusted. The Privacy CA
must be trusted to make TPM_IDENTITY_CREDENTIAL only if the request for attestation is a unique
request and the stated TPM and platform are genuine. The Privacy CA must be trusted never to
reveal a plaintext copy of TPM_IDENTITY_CREDENTIAL and to be truthful when stating that a
particular TPM_IDENTITY_CREDENTIAL is associated with a particular identity.

End of informative comment.

Version 1.1a 1 December 2001

TCPA Main Specification

9.3.1 TPM_Makeldentity
Type

Page 269

TCPA protected capability; user must provide authorizations from the TPM Owner and the SRK.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
|Sz) # | sz
1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND
2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_Makeldentity.
4 120] 25 | 20 | TCPA_ENCAUTH identityAuth Encrypted usage authorization data for the new identity
. . The digest of the identity label and privacy CA chosen
5 120 | 3s | 20 | TCPA_CHOSENID_HASH | labelPrivCADigest for the new TPM identity. (See FE' £ for detals)
. Structure containing all parameters of new identity key.
6 | <> 4 | & | TCPAKEY ldKeyParams pubKey.keyLength & idKeyParams.encData are both 0
7 4 TCPA_AUTHHANDLE srkAuthHandle The authorization handle used for SRK authorization.
211 | 20 | TCPA_NONCE srkLastNonceEven Even nonce previously generated by TPM
g8 | 20 | 3m | 20 | Tcea NONCE srknonceOdd Nonce generated by system associated with
srkAuthHandle
9 1) 4m | 1] BOOL continueSrkSession Ignored
The authorization digest for the inputs and the SRK.
10 | 20 TCPA_AUTHDATA srkAuth HMAC key: sik usageAuth.
The authorization handle used for owner authorization.
11| 4 TCPA_AUTHHANDLE authHandle Session type MUST be OSAP.
212 | 20 | TCPA_NONCE authLastNonceEven iIfl\ézzrtlsnonce previously generated by TPM to cover
12 | 20 | 312 | 20 | TcPA NONCE nonceOdd Nonce generated by system associated with
authHandle
131 1 |42 | 1 | BOOL continueAuthSession Ignored
14 | 20 20 | TcPA AUTHDATA ownerAuth Thg authorization digest for inputs and owner. HMAC
- key: ownerAuth.
Outgoing Operands and Sizes
PARAM HMAC o
Type Name Description
Sz # | sz
1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND
2 4 UINT32 paramSize Total number of output bytes including paramSize and tag
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.
2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_Makeldentity.
4 | <> | 3 | <> | TCPA_KEY idKey The newly created identity key

Version 1.1a 1 December 2001

TCPA Main Specification Page 270

5 4 4s 4 | UINT32 identityBindingSize The used size of the output area for identityBinding
6 | < | 56 < | syEp identityBinding _Slgnature of TCPA_IDENTITY_CONTENTS using
idKey.private.
7 120 | 242 | 20 | TCPA_NONCE srkNonceEven Even nonce newly generated by TPM.
Nonce generated by system associated with
312 | 20 | TCPA_NONCE srknonceQdd stkAuthHandle
8 1] 4m2| 1] BOOL continueSrkSession Fixed value FALSE
9 | 20 TCPA_AUTHDATA srkAuth The guthonzatlon dlgest used for the outputs and srkAuth
session. HMAC key: srk.usageAuth.
10 | 20 | 211 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3u1 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
11| 1 §4m | 1 }BOOL continueAuthSession | Fixed value FALSE
12 | 20 20 | TCPA_AUTHDATA resAuth The author.lzatlon digest for the returned parameters.
HMAC key: ownerAuth.
Description

The command TPM_Makeldentity is used to generate an identity in a TPM and to request attestation to
that identity.

The public key of the new TPM identity SHALL be identityPubKey. The private key of the new TPM
identity SHALL be tpm_signature_key.

This command requires XOR encryption of the authorization to use the new identity. To create an XOR
string, the caller takes the OSAP session shared secret, concatenates it with authLastNonceEven, and
then hashes the result. This hash encrypts the authorization value and produces identityAuth.

Properties of the new identity

Type Name Description

TCPA_PUBKEY i dent i t yPubKey This SHALL be the public key of a previously unused
asymmetric key pair.

TCPA_STORE_ASY | t pm si gnat ur e_key This SHALL be the private key that forms a pair with
MKEY identityPubKey and SHALL be extant only in a TCPA-
shielded location.

This capability also generates a TCPA_KEY containing the tpm_signature_key.

If identityPubKey is stored on a platform after an Owner has taken ownership of that platform, it SHALL
exist only in storage to which access is controlled and is available to authorized entities.

Actions
A Trusted Platform Module that receives a valid TPM_Makeldentity command SHALL do the following:
1. Validate the idKkeyParams parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For
interoperability the key length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be
comparable to RSA 2048

Version 1.1a 1 December 2001

TCPA Main Specification Page 271

10.
11.
12.
13.
14.
15.

16.

Use authHandle to verify that the Owner authorized all TPM_Makeldentity input parameters.
Use srkAuthHandle to verify that the SRK owner authorized all TPM_Makeldentity input parameters.

Verify that idKeyParams -> keyUsage is TPM_KEY_IDENTITY. If it is not, return
TCPA_BAD_PARAMETER"

Verify that idKeyParams -> keyFlags -> migratable is FALSE. If it is not, return
TCPA_BAD_PARAMETER"

Obtain the identity_authorization to be associated with the new TPM identity, by decrypting the field
IdentityAuth. The establishment of the TPM_OSAP session MUST use the authentication of the TPM
Owner.

Set continueAuthSession to FALSE.

Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TCPA-protected
capability, in accordance with the algorithm specified in idKkeyParams

Create TCPA_KEY structure idKey using idKeyParams as the default values for the structure.
Ensure that the authorization information in identityAuth is properly stored in the idKey as usageAuth.
Attach identityPubKey and tpm_signature_key to idKey

Set idKey -> migrationAuth to TTCPA_PERSISTANT_DATA -> tpmProof

Ensure that all TCPA_PAYLOAD_TYPE structures identity this key as TCPA_PT_ASYM

Encrypt the private portion of idKey using the SRK as the parent key

Create a TCPA_IDENTITY_CONTENTS structure named idContents using labelPrivCADigest and
the information from idKey

Sign idContents using tpm_signature_key and TCPA_SS RSASSAPKCS1vl5 SHAL. Store the
result in identityBinding.

Version 1.1a 1 December 2001

TCPA Main Specification Page 272

9.3.2 TSS_CollateldentityRequest
Start of informative comment:

The purpose of the TSS_CollateldentityRequest command is to assemble all the data that will be required
by a Privacy CA in order to assess a platform and attest to the identity of a Subsystem.

The TSS_CollateldentityRequest command is separate from the TPM_Makeldentity command because
their processing might be done on different engines. The reason is that TSS_CollateldentityRequest does
not have to be trustworthy but TPM_Makeldentity must be trustworthy. Therefore, an implementation of
TSS CollateldentityRequest does not require the same protection as an implementation of
TPM_Makeldentity.

A session key (a nonce) is used to provide confidentiality of the “TCPA_IDENTITY_REQ.” This is to
ensure that only the Privacy CA chosen by the Owner can interpret the data, while minimizing exposure
of that Privacy CA’s identity (public) key.

Once the data structure TCPA_IDENTITY_REQ has been produced, it should be sent to the Privacy CA
chosen by the Owner.

End of informative comment.
Type
TSS capability and MAY be TPM capability.

Suggested Parameters

Type Name Description
TCPA _IDENTITY_PROOF pr oof ﬂ_g_is_ﬂALL be the structure specified in
TCPA _KEY_PARMS SymAl gorithm This SHALL specify the type of symmetric

encryption algorithm to be used for a
session key, and the scheme it will use to
perform encryptions.

TCPA_PUBKEY CaPubKey This SHALL be public key of the CA which
will provide the credential for the identity

UINT32* ReqgSi ze This SHALL be the size of the identityReq
field

TCPA_IDENTITY_REQ* | denti t yRequest This SHALL be the data structure defined in
this section.

Description

The command TSS_CollateldentityRequest assembles all data necessary to request attestation of a
Trusted Platform Module identity.

The structure “proof” (of type TPM_IDENTITY_PROOF) contains fields that a privacy-CA requires in order
to decide whether to attest to the TPM identity described by “proof”.

A Trusted Platform Subsystem that receives a valid TSS_CollateldentityRequest command SHALL export
the data structure “TCPA_IDENTITY_REQ.”

The TSS in executing this function performs two encryptions. The first is to symmetrically encrypt the
information and the second is to encrypt the symmetric encryption key with an asymmetric algorithm. The
symmetric key is a random nonce and the asymmetric key is the public key of the CA that will provide the
identity credential.

Version 1.1a 1 December 2001

TCPA Main Specification Page 273

For reasons of interoperability, CaPubKey SHOULD indicate TCPA_ALG_RSA (RSA) with a key length of
2048 bits. SymAlgorithm SHOULD be TCPA_ALG_3DES (3DES in CBC mode).

The use of TCPA_ALG_AES (AES in CBC mode) as the symmetric algorithm is encouraged.
Actions

The command SHALL perform the following actions:

1.

a > wN

o

9.

10.

11.
12.

Validate that the TSS can support the symmetric algorithm and the asymmetric algorithm necessary
to perform the encryptions. If the TSS does not support these algorithms it MUST return
TCPA_BAD_PARAMETER.

Initialize the identityRequest area to be the TCPA_IDENTITY_REQ structure.
Create a session key in accordance with the algorithm in SymAlgorithm, by calling TSS_GetRandom.
Create an IV in accordance with the algorithm in SymAlgorithm, by calling TSS_GetRandom.

Encrypt the TCPA_IDENTITY_PROOF structure using the session key created in step El the IV
created in step 4[gnd the symmetric algorithm specified by SymAlgorithm.

Place the encrypted TCPA _IDENTITY_PROOF blob into the TCPA_IDENTITY_REQ.symBlob field.
Create a TCPA_SYMMETRIC_KEY structure using the session key created in step 3.|

Encrypt the TCPA_SYMMETRIC_KEY structure created in stepusing the algorithm specified in the
key caPubKey.

Place the encrypted TCPA_SYMMETRIC_KEY blob into the TCPA_IDENTITY_REQ.asymBlob field.

Create TCPA_IDENTITY_REQ.SymAlgorithm using SymAlgorithm and inserting the IV created in
step 4 ihto the previously empty “parms” field.

Create TCPA_IDENTITY_REQ.AsymAlgorithm from CaPubKey.
Return the TCPA_IDENTITY_REQ structure.

Version 1.1a 1 December 2001

TCPA Main Specification Page 274

9.3.3 Contacting a Privacy CA

Version 1.1a 1 December 2001

TCPA Main Specification Page 275

9.3.4 TPM_Activateldentity
Start of informative comment:

The purpose of TPM_Activateldentity is to twofold. The first purpose is to obtain assurance that the
credential in the TCPA_SYM_CA_ATTESTATION is for this TPM. The second purpose is to obtain the
session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

TPM_Activateldentity checks that the symmetric session key corresponds to a TPM-identity before
releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to
authorize the TPM_Activateldentity command. The owner may authorize the command using either the
TPM_OIAP or TPM_OSAP authorization protocols.

End of informative comment.

Type

TCPA protected capability; user must provide authorization from the TPM Owner to execute command.

Incoming Operands and Sizes

PARAM HMAC o
Type Name Description
Sz # | sz
1| 2 TCPA_TAG tag TPM_TAG_RQU_AUTH2_COMMAND
2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag
3 4 1s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_Activateldentity.
4 4 TCPA_KEY_HANDLE idkey Identity key to be activated
5 4 2s 4 | UINT32 blobSize Size of encrypted blob from CA
6 [<> | 35 | < | BYTE[] blob The encrypted ASYM_CA_CONTENTS structure
7 4 TCPA_AUTHHANDLE idKeyAuthHandle The authorization handle used for ID key authorization.
211 | 20 | TCPA_NONCE idKeyLastNonceEven | Even nonce previously generated by TPM
: Nonce generated by system associated with
8 | 20 | 3w | 20 | TCPA_NONCE idKeynonceOdd idkeyAuthHandle
9 1) 4m | 1] BOOL continueldKeySession | Continue usage flag for idkeyAuthHandle.
. The authorization digest for the inputs and ID key.
10 | 20 TCPA_AUTHDATA idKeyAuth HMAC key: idKey.usageAuth.
11| 4 TCPA_AUTHHANDLE authHandle The authorization handle used for owner authorization.
212 | 20 | TCPA_NONCE authLastNonceEven iIi\éeljrtlsnonce previously generated by TPM to cover
12 | 20 | 312 | 20 | TcPA_NONCE nonceOdd Nonce generated by system associated with
authHandle
13 1§ 42| 1 | BOOL continueAuthSession | The continue use flag for the authorization handle
14 | 20 20 | TCPA_AUTHDATA ownerAuth Thg authorization digest for inputs and owner. HMAC
key: ownerAuth.
Outgoing Operands and Sizes
| PARAM I HMAC I Type Name Description

Version 1.1a 1 December 2001

TCPA Main Specification

Page 276

1 2 TCPA_TAG tag TPM_TAG_RSP_AUTH2_COMMAND
2 4 UINT32 paramsize tTacgal number of output bytes including paramSize and
3 4 1s 4 | TCPA_RESULT returnCode The return code of the operation. See section 4.3.

2s 4 | TCPA_COMMAND_CODE | ordinal Command ordinal: TPM_ORD_Activateldentity.

TCPA_SYMMETRIC_KEY

symmetricKey

The decrypted symmetric key.

5 | 20] 212 | 20 | TCPA_NONCE idKeyNonceEven Even nonce newly generated by TPM.
: Nonce generated by system associated with
3n1 | 20 | TCPA_NONCE idKeynonceOdd idkeyAuthHandle
6 1] 4m | 1] BOOL continueldKeySession | Continue use flag, TRUE if handle is still active

The authorization digest used for the returned

7 | 20 TCPA_AUTHDATA idKeyAuth parameters and idKeyAuth session. HMAC key:
idKey.usageAuth.
8 | 20 | 242 | 20 | TCPA_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
3H2 | 20 | TCPA_NONCE nonceOdd Nonce generated by system associated with authHandle
9 1] 4nm2 | 1] BOOL continueAuthSession Continue use flag, TRUE if handle is still active
10 | 20 20 | TcPA AUTHDATA resAuth The author!zanon digest for the returned parameters.
- HMAC key: ownerAuth.
Description

The command TPM_Activateldentity activates a TPM

TPM_Makeldentity.

identity created using the command

The command assumes the availability of the private key associated with the identity. The command will
verify the association between the keys during the process.

The command will decrypt the TCPA_ASYM_CA_CONTENTS structure, extract the session key and
verify the connection between the public and private keys.

Actions

A Trusted Platform Module that receives a valid TPM_Activateldentity command SHALL do the following:

1.

Using the authHandle field, validate the owner’s authorization to execute the command and all of the
incoming parameters.

Using the idKeyAuthHandle, validate the authorization to execute command and all of the incoming
parameters

Decrypt blob using PRIVEK as the decryption key. The resulting decrypted area MUST be a
TCPA_ASYM_CA_CONTENTS structure.

Compute a digest of the public key in the idKey. Compare the computed digest to the value in the
decrypted TCPA_ASYM_CA CONTENTS structure. Return with the error code
TCPA _BAD_PARAMETER on a mismatch.

Validate that the idKey is the public key of a valid TPM identity by checking that idKey -> keyUsage is
TPM_KEY_IDENTITY

Return the session key from the TCPA_ASYM_CA_CONTENTS structure.

Version 1.1a 1 December 2001

TCPA Main Specification Page 277

9.3.5 TSS_RecoverTPMIdentity
Start of informative comment:

The purpose of TSS_Recoverldentity is to recover a plaintext copy of the data structure
TPM_IDENTITY_CREDENTIAL that attests that a particular identity belongs to a genuine TCPA Trusted
Platform.

The TSS_Recoverldentity command is separate from the TPM_Activateldentity command because their
processing might be done on different engines. The reason is that TSS_Recoverldentity does not have to
be trustworthy but TPM_Activateldentity must be trustworthy. Therefore, an implementation of
TSS Recoverldentity does not require the same protection as an implementation of
TPM_ Activateldentity.

Exactly one entity may attest to a TPM identity.

Access to the TPM_IDENTITY_CREDENTIAL must be restricted to entities that have a “need to know.”
This is for reasons of privacy.

End of informative comment.

The command TSS_Recoverldentity obtains a plaintext copy of the TPM_IDENTITY_CREDENTIAL
created by a Privacy CA.

If the data structure TPM_IDENTITY_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is only
available to authorized entities.

Suggested Parameters

Type Name Description

TCPA_SYMMETRIC_KEY | Sessi onKey This SHALL be the symmetric key decrypted by the
TPM_Activateldentity

UINT32 SYymAtt Si ze This SHALL be the size of the symAtt parameter

TCPA_SYM_CA_ATTEST |symAtt This SHALL be the

ATION* TCPA_SYM_CA_ATTESTATION structure

UINT32* Credenti al Si ze | This SHALL be the size of the credential

BYTE* Credenti al This SHALL be the decrypted
TCPA_IDENTITY_CREDENTIAL

Actions

A Trusted Platform Subsystem that receives a valid TSS Recoverldentity command SHALL do the
following:

1. Using the session key and the symmetric algorithm indicated by algorithm and the algorithm
parameters, decrypt credential parameter inside TCPA_SYM_CA_ATTESTATION to recover the
TPM_IDENTITY_CREDENTIAL.

2. The TSS SHOULD verify the self-consistency of TPM_IDENTITY_CREDENTIAL and abandon this
TSS_Recoverldentity process if there is an inconsistency. The process of verifying certificates is
outside the scope of this specification.

3. Export TPM_IDENTITY_CREDENTIAL.

Version 1.1a 1 December 2001

TCPA Main Specification Page 278

9.4 Instantiation of Data When Contacting a Privacy CA

9.4.1 From Owner to Privacy CA
The protocol from the Owner to the Privacy CA SHALL consist of the following IdentityRequest message:

Tcpal dentityReq ::= SEQUENCE {
version Ver si on,
asynmil g TcpaAl gori t hPar s,
symAl g TcpaAl gori t hnPar s,

Version 1.1a 1 December 2001

TCPA Main Specification

asynBl ob
synBl ob
}
Version ::= | NTEGER

-- the version nunber,
-- this specification.
-- specification.

TcpaAl gorithnParms :: =
algld
par s

EncTcpaSymetri cKey,
EncTcpal denti t yPr oof

for conpatibility with future revisions of
be O for this version of the

It shall

SEQUENCE {
Al gorithmdentifier,
OCTET STRI NG

-- the paraneters for the algorithmspecified in algld

}

EncTcpaSynmetri cKey ::

-- the ciphertext resulting fromthe encryption (under the public
-- identity key of the Privacy CA) of the follow ng DER-encoded data

-- structure.

TcpaSynmet ri cKey :
algld
encSchene
dat a

}

EncTcpal denti t yProof

-- structure:

Tcpal denti t yPr oof
t cpaVer si on
t pm dKey
t pm dLabel
i denti t yBi ndi ng
endor senent Cr ed
pl at f or nCr ed
conf or manceCr ed

-- Subj ect Publ i cKeyl nfo

-- (a SEQUENCE of an Algorithmdentifier and a BIT STRI NG
The BI T STRI NG contains the subject’s public
if the algorithmspecified is rsaEncryption,
-- BI'T STRING contai ns the BER encodi ng of a value of PKCS #1 type

-- specified in X 509.
-- key (for exanple,

-- “RSAPubl i cKey”).

-- identityBindi ng

-- is the signature value(using the newy generated TPM private key
-- that corresponds to the public key in tpm dKey) over the data
-- specified in Section 4.30.1 TCPA | DENTI TY_CONTENTS. How that data --

BI T STRI NG

. = SEQUENCE {

Al gorithm dentifier,

OCTET STRING, -- TCPA_ENCRYPTI ON_SCHEME
BIT STRING -- random y-generated session key

.= BIT STRING
-- the ciphertext resulting fromthe encryption (under the session
-- key in TcpaSymmetricKey above) of the foll owi ng DER-encoded dat a

.= SEQUENCE {

TCPASpecVersi on, --
Subj ect Publ i cKeyl nf o,
CCTET STRI NG, - -
Bl T STRI NG, - -
Certificate, - -
Certificate, - -
Certificate - -

“maj or. mnor”

-- new public key

identity | abel

(see bel ow)

X. 509v3 PK cert

X. 509 attr.
X. 509 attr.

cert
cert

formatted or delinited is beyond the scope of the protocol

-- specified here;

however,

-- both the TPM and the Privacy CA

Version 1.1a 1 December 2001

the formatti ng chosen nust

be known to

is

Page 279

is

TCPA Main Specification Page 280

9.4.2 From Privacy CA to Owner

The protocol from the Privacy CA to the Owner consists of the PCAResponse message:

PCAResponse ::= SEQUENCE {
version Ver si on,
synmil g Al gorithmdentifier,

encTcpaAsyntCaCont ent s EncTcpaAsynCaCont ent s,
t cpaSyntCaAt t est ati on TcpaSyntCaAtt est ati on

}

EncTcpaAsynCaContents ::= BIT STRI NG
-- the ciphertext resulting fromthe encryption (under the PUBEK of
-- the TPM of the foll owi ng DER-encoded data structure:

TcpaAsynCaContents ::= SEQUENCE {
i dDi gest BIT STRING -- hash of tpm dKey
sessi onKey BI T STRI NG

-- NOTE: the validity of the entire protocol for obtaining a TPM

-- identity depends critically upon the assunption that a genuine
-- TPMwi Il only ever decrypt data using its PRI VEK as part of the
-- TPM Activateldentity() call. An Omer will never be able to ask a
-- TPM for the decryption of arbitrary data that has been encrypted
-- with its PUBEK. Furthernore, the difficulty of successfully

-- inmpersonating a TPMis ultimately bound to the conputational

-- conmplexity of finding a collision for idDigest. It is therefore
-- STRONGLY RECOMVENDED t hat the di gest be computed wusing the full
-- output of a cryptographic hash algorithmof sufficient strength
-- (e.g., the full 160 bits of SHA-1).

TcpaSyntCaAttestation ::= SEQUENCE {
al gorithm TcpaAl gori t hnPar s,
encCredenti al BI T STRI NG
-- the ciphertext resulting fromthe encryption (under the
-- symmetric session key in TcpaAsymCaCont ents above) of the
-- tpndentityCredential (which is itself DER-encoded as an
-- X. 509 PK Certificate).

Version 1.1a 1 December 2001

TCPA Main Specification Page 281

9.5 Instantiation of Credentials as Certificates
Start of informative comment:

Unambiguous definition of a data structure containing credentials is necessary if those credentials are to
be communicated between platforms. A certificate is such an unambiguous definition.

The TCPA requires credentials to prove various pieces of information. This version of the specification
uses X.509 certificates to provide these credentials. The TCPA is not requiring the entire flexibility of
X.509, rather TCPA is using the well defined certificate structure to create the necessary TCPA
credentials.

End of informative comment.
Certificate syntax

TCPA certificate syntax conforms with the definitions for public-key certificates and attribute certificates in
X.509. The following TCPA certificate types are public-key certificates:

* TPM endorsement certificate
* TPM identity certificate
The following TCPA certificate types are attribute certificates:
» Platform endorsement certificate
» Platform conformance certificate
* Validation data certificate
The form of the following certificates is out of scope for this version of the TPM specification:
 TPM endorsement entity certificate
* TCPA component endorsement entity certificate
» Platform endorsement entity certificate
» Platform conformance certificate

The serial number used by the following certificates is not unique for each platform. It is anticipated that
the serial number would remain the same on multiple platforms.

For instance, all platforms of the same model and version would have the same serial number in their
platform endorsement credential. For these same platforms, the platform conformance certificates would
all use the same serial number but that number would be different than the endorsement certificate serial
number.

Version 1.1a 1 December 2001

TCPA Main Specification Page 282

9.5.1 Instantiation of TPM_ENDORSEMENT_CREDENTIALS
Start of informative comment:
An endorsement certificate is an instantiation of an TPM_ENDORSEMENT_CREDENTIAL.

Access to an endorsement certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that the PUBEK is a 2048bit RSA keys.
End of informative comment.

If the data structure <endorsement_certificate> is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

Overview

The TPM endorsement certificate represents an assertion by the TPM endorsement entity that the
referenced TPM conforms with the TCPA TPM specification.

Profile
Notes:

» Some fields are assigned a value even though the certificate user performs no action based on
that value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

o It is intended that the lifetime of a TPM will be shorter than the crypto-period of the TPM
endorsement public and private keys. Therefore, keys are not “rolled-over”.

* The trustworthiness of the architecture is vulnerable to the compromise of a single TPM
endorsement private key. However, the architecture does not include a revocation mechanism.
Nevertheless, certain forms of revocation scheme can be retrofitted, should it become necessary
at some time in the future.

In the case of the TPM endorsement certificate, the issuer is the TPM endorsement entity and the user is
a Privacy CA.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number Assign a value unigue amongst all | Use in validating the platform endorsement
certificates issued by “issuer”. and conformance certificates.

Signature Assign the algorithm identifier sha- | Check the algorithm identifier =
1IWithRSAEnNcryption 1:2:840:113549:1:1:5, else reject. Validate
(1:2:840:113549:1:1:5). the signature on the certificate using the

public key of the TPME (which shall be a
2048-bit RSA key), obtained by an out-of-
band means and referenced by “issuer” and
“authority key identifier”.

Issuer The distinguished name of the Check that the name is the name of one of
TPM endorsement entity. That is the acceptable TPM endorsement entities,
the entity that asserts that the use in validating the platform endorsement
subject TPM conforms with the and conformance certificates.

TCPA specification. (Note: this
may be the TPM manufacturer or a
conformance test laboratory.)

Version 1.1a 1 December 2001

TCPA Main Specification

Page 283

Validity

Subject

Subject public
key info

Issuer unique
identifier

Subject unique
identifier

Extensions

Authority key
identifier

Subject key
identifier

Key usage

Extended key
usage

Private key
usage period

Certificate
policies

Policy mappings

Subject
alternative name

Issuer alternative
name

Assign notBefore to the current
time and notAfter to a later time
(maybe the latest time permitted by
the encoding scheme).

Assign the value NULL.

Assign algorithm identifier RSAES-
OAEP (1:2:840:113549:1:1:7).
Include a 2048-bit RSA public key
for key encipherment with OAEP
formatting. (Note: this is the TPM
public endorsement key.)

Omit.

Omit.

Assign "critical" the value FALSE.
Assign the value of “subject key
identifier” from the manufacturer’'s
certificate, if available, else omit.

Omit.

May be omitted. If included, then
the key encipherment bit shall be
set TRUE.

Omit.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an
HTTP URL at which a plain
language version of the TPM
endorsement entity's certificate
policy may be obtained. Assign
the explicit text userNotice policy
qualifier the value “TCPA Trusted
Platform Module Endorsement”.

Omit.

Assign "“critical" the value FALSE.
Include the TPM identity, using the
directory name-form with RDNs for
the TPM manufacturer, model and
version numbers.

Omit.

Check that the current time is later than the
notBefore time, else reject.

No action.

Use the public key in the TPM identity
protocol.

No action.

No action.

Use to locate the certificate that contains a
public key of the manufacturer with which the
signature on this certificate can be verified.

No action.

If present, then check that the key
encipherment bit is TRUE, else reject.

If present and marked critical, then reject.

If present, then check that the current time is
later than the notBefore time.

Check that at least one acceptable
policyldentifier value is present. Transfer the
acceptable policylnformation value to the
TPM identity certificate “certificate policies”
extension.

No action.

Check that the TPM manufacturer, model
and version numbers are acceptable.
Transfer to the TPM identify certificate
“subject alternative name” extension value
for the TPM.

No action.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 284

Subject directory
attributes

Basic constraints

Name constraints
Policy constraints
Inhibit any policy

CRL distribution
points

Include a “subject directory
attributes” extension. Assign
“critical" the value FALSE. Include
the multi-valued attribute
“supported algorithms” (see
X.509). Include object identifiers
for the following algorithms:
RSAES-OAEP, SHA-1
(1.3.14.3.2.26) and TPM identity
protocol.

Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest
version of the TCPA specification
with which the TPM
implementation conforms.

Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of
the TPM. (Note: this is the TPM
distributed validation.)

Assign “critical” the value TRUE.
Assign “CA” the value FALSE

Omit.
Omit.
Omit.
Omit.

Adapt the TPM identity protocol to use only
algorithms supported by the TPM.

Check that the TCPA specification version is
acceptable, else reject.

Optionally (and if present), check whether
the TPM implementation has acceptable
security qualities. Transfer to the TPM
identity certificate “subject directory
attributes” extension.

No action.

No action.
No action.
No action.

If present and marked critical, then reject.

Version 1.1a 1 December 2001

TCPA Main Specification Page 285

9.5.2 Instantiation of PLATFORM_CREDENTIAL
Start of informative comment:
A platform certificate is an instantiation of a platform_credential.

Access to the platform certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

End of informative comment.

If the data structure <platform_certificate> is stored on a platform after an Owner has taken ownership of
that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The Platform Endorsement Certificate represents an assertion by the platform endorsement entity that the
referenced platform incorporates a TPM and an RTM in a manner that conforms with the TCPA
specification.

Profile

Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use
of the certificate.

In the case of the Platform endorsement certificate, the issuer is the platform manufacturer and the user
is a Privacy CA.

Serial number

attrCertValidity
Period

(1:2:840:113549:1:1:5).

Assign a value unique per instance of
a TBB amongst all certificates issued
by "issuer"

Assign notBefore to the current time
and notAfter to a later time (maybe

thn latnct timan narmittad hy tha

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder BaseCertificatelID referencing the | Check that the certificate ID correctly
corresponding TPM endorsement | references the TPM endorsement certificate
certificate. (Note: this is the TPM | used to validate the TPM identity request
credential reference.) message, else reject.

Issuer The distinguished name of the | Check that the name is the name of one of
platform endorsement entity. That is | the acceptable platform endorsement
the entity that asserts that the subject | entities.
platform incorporates a TPM and
RTM in a manner that conforms with
the TCPA specification. (Note: this
may be the platform manufacturer or
a conformance test laboratory.)

Signature Assign algorithm identifier sha- | Check algorithm identifier =
1WithRSAENcryption 1:2:840:113549:1:1:5, else reject. Validate

the signature on the certificate using the
public key of the Platform Endorsement
Entity (which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key
identifier”

No action.

Check that the current time is later than the
notBefore time, else reject.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 286

Attributes

Issuer unique
identifier

Extensions

Certificate

the latest time permitted by the
encoding scheme).

A ‘“supported algorithms” attribute
(see X.509) indicating the
cryptographic algorithms supported by
the platform.

Include the "TCPA Specification
Version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation
conforms.

If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria protection profile,
then include the "foundation
protection profile" identifier attribute.

If the RTM and the means by which
the TPM and RTM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the "foundation security
target" identifier attribute.

If there is, or will be, a Platform

Conformance Certificate, then a
ConformanceCertificateLocation
attribute should be included to

indicate how, and from where, it can
be retrieved.

Optionally, include the "security
qualities" attribute with a text string
reflecting the security qualities of the

platform. (Note: this is the platform
distributed validation.)

Omit.

Assign “critical” the value TRUE.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

Check that the TCPA specification version is
acceptable, else reject.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate.

Optionally, check whether the identifier is
acceptable. Transfer the protection profile
identifier to the TPM identity certificate
"subject directory attributes" extension.

Optionally, check whether the identifier is
acceptable. Transfer the security target
identifier to the TPM identity certificate
"subject directory attributes" extension.

Use the information to locate and retrieve the
corresponding Platform Conformance
Certificate.

Optionally (and if present), check whether
the platform implementation has acceptable
security qualities. Transfer to the TPM

identity certificate "subject directory
attributes" extension.

No action.

Check that at least one acceptable

Version 1.1a 1 December 2001

TCPA Main Specification

Page 287

policies

Subject
alternative
name

Authority key
identifier

SOA ldentifier

Authority
Attribute
Identifier

Role
Specification
Certificate
Identifier

Basic Attribute
Constraints

Delegated
Name
Constraints
Time
Specification
Acceptable

Certificate
Policies

Attribute
Descriptor

User Notice

No
Available

Rev

Acceptable
Privilege
Policies

Assign policyldentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform manufacturer’'s
certificate policy may be obtained.
Assign the explicit text userNotice
policy qualifier the value “TCPA
Trusted Platform Endorsement”.

Assign “critical” the value FALSE.
Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
endorsement entity certificate, if
available, else omit.

Omit.
Omit.

Omit.

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Omit.

Omit.

Assign “critical” the value TRUE.
Assign one or more of the values of
policyldentifier from the certificate
policies extension of the TPM
endorsement certificate.

Omit.

Omit.
Omit.

Omit.

policyldentifier value is present. Transfer the
policylnformation value to the TPM identity
certificate "certificate policies" extension.

Check that the manufacturer, model and
version numbers are acceptable. Transfer to
the TPM identity certificate “subject
alternative name” extension.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform endorsement entity with
which the signature on this certificate can be
verified.

No action.

No action.

No action.

Check that “authority” is FALSE.

No action.

No action.

Check that the certificate policies extension
of the TPM endorsement certificate contains
at least one of the values.

No action.

No action.

No action.

No action.

Version 1.1a 1 December 2001

TCPA Main Specification

9.5.3

Overview

Page 288

Instantiation of TPM_CONFORMANCE_CREDENTIAL

The Platform Conformance Certificate represents an assertion by the platform conformance entity that the

referenced platform conforms with the TCPA specification.

Profile

Note: some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making inappropriate use

of the certificate.

In the case of the Platform conformance certificate, the issuer is the platform manufacturer and the user

is a Privacy CA.

Field

Issuer action

User action

Version
Holder

Issuer

Signature

Serial number

attrCertValidity
Period

Attributes

Assign value 1 (v2).

Include the platform name, uniquely
identifying the type of the platform
with RDNs for the manufacturer,
model and version numbers.

The distinguished name of the
platform conformance entity. That is
the entity that asserts that the design
of the platform conforms with the
TCPA specification. (Note: this may
be the platform manufacturer or a
conformance test laboratory.)

Assign algorithm identifier sha-
1WithRSAENcryption

(1:2:840:113549:1:1:5).

Assign a value unique per evaluated
series of a TBB amongst all
certificates issued by "issuer"

Assign notBefore to the current time
and notAfter to a later time (maybe
the latest time permitted by the
encoding scheme).

Include a “supported algorithms”
attribute (see X.509) indicating the
algorithms supported by the platform.

Include the "TCPA specification
version" attribute, with field values
correctly reflecting the highest version
of the TCPA specification with which
the platform implementation

Check value = 1, else reject.

Check that the value is the same as the
value in the corresponding Platform
Endorsement Certificate, Subject Alternative
Name extension, else reject.

Check that the name is the name of one of

the acceptable platform conformance
entities.
Check algorithm identifier =

1:2:840:113549:1:1:5, else reject. Validate
the signature on the certificate using the
public key of the platform conformance entity
(which should be a 2048-bit RSA key),
obtained by an out-of-band means and
referenced by “issuer” and “authority key
identifier”.

No action.

Check that the current time is later than the
notBefore time, else reject.

Transfer the object identifiers for any
acceptable algorithms to the TPM identity
certificate “subject directory attributes”
extension.

Check that the TCPA specification version is
acceptable, else reject.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 289

Issuer unique
identifier

Extensions

Certificate
policies

Subject
alternative
name

Authority key
identifier

SOA ldentifier

conforms.

If the TPM has been successfully
evaluated against a Common Criteria
protection profile, then include the
TPM protection profile identifier
attribute.

If the TPM has been successfully
evaluated against a Common Criteria
security target, then include the TPM
security target identifier attribute.

If the RTM and means by which the
RTM and TPM are incorporated into
the platform has been successfully
evaluated against a Common Criteria
protection profile, then include the
foundation protection profile identifier
attribute.

If the RTM and the means by which
the RTM and TPM have been
incorporated into the platform have
been successfully evaluated against a
Common Criteria security target, then
include the foundation security target
identifier attribute.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Assign the cPSuri
policy qualifier the value of an HTTP
URL at which a plain language
version of the platform conformance
entity's certificate policy may be
obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Conformance Credential”.

FALSE.
uniquely
platform
platform

version

Assign “critical” the value
Include the platform name,
identifying the type of the
with RDNs for the
manufacturer, model and
numbers.

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the platform
conformance entity's public-key
certificate, if available, else omit.

Omit.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate.

Check that the identifier is acceptable.
Transfer the protection profile identifier to the
TPM identity certificate "subject directory
attributes" extension.

Check that the identifier is acceptable.
Transfer the security target identifier to the
TPM identity certificate “"subject directory
attributes" extension.

No action.

Check that at least one acceptable
policyldentifier value is present. Transfer the
policylnformation value to the TPM identity
certificate.

Check that the manufacturer, model and
version numbers are identical to those in the
platform endorsement certificate "subject
alternative name" extension.

The certificate user may use this value to
locate the certificate that contains a public
key of the platform conformance entity with
which the signature on this certificate can be
verified.

No action.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 290

Authority
Attribute
Identifier

Role
Specification
Certificate
Identifier

Basic Attribute
Constraints

Delegated
Name
Constraints

Time
Specification
Acceptable

Certificate
Policies

Attribute
Descriptor

User Notice

No Rev
Available

Acceptable
Privilege
Policies

Omit.

Omit.

Assign “critical” the value TRUE.
Assign “authority” the value FALSE.

Omit.

Omit.

Omit.

Omit.

Omit.
Omit.

Omit.

No action.

No action.

Check that “authority” is FALSE.

No action.

No action.

No action.

No action.

No action.

No action.

No action.

Version 1.1a 1 December 2001

TCPA Main Specification

9.5.4

Instantiation of VALIDATION_DATA

Start of informative comment:

Page 291

A “Validation Data Attribute Certificate” is an instantiation of validation data.

End of informative comment.

Overview

The validation data certificate represents an assertion by the component validation entity that the
component instructions referenced by the certificate have the attributes conveyed in the certificate. The
certificate syntax conforms with the X.509 definition for an attribute certificate.

In the case of the validation certificate, the issuer is the Validation Entity and the user is a TPS.

Field Issuer action User action

Version Assign value 1 (v2). Check value = 1, else reject.

Holder ObjectDigestinfo with missing object | Calculate the digest of the memory
identifier. The value of objectDigest shall | image of the software instructions and
be the digest calculated over the memory | check that it is identical to the value in
image of the software instructions using | this field prior to passing control to the
the identified digest algorithm. component, else reject.

Issuer The distinguished name of the | Check that the name is the name of one
component validation entity. That is the | of the acceptable component validation
entity that asserts that the component | entities.
exhibits the attributes contained in the
certificate. (Note: typically, but not
necessarily, the manufacturer of the
component).

Signature Assign algorithm identifier sha- | Check algorithm identifier =
1WithRSAENcryption 1:2:840:113549:1:1:5, else reject.

(1:2:840:113549:1:1:5).

Validate the signature on the certificate
using the public key of the software
manufacturer (which should be a 2048-bit
RSA key), obtained by an out-of-band
means and referenced by “issuer” and
“authority key identifier”.

Serial number

Assign a value unigue amongst all
certificates issued by "issuer".
Unigueness to be determined by the
manufacturer.

No action.

attrCertValidityPe
riod

Assign notBefore to the current time and
notAfter to a later time (maybe the latest
time permitted by the encoding scheme).

Check that the current time is later than
the notBefore time, else reject.

Attributes

Include the "TCPA specification version"
attribute, with field values correctly
reflecting the highest version of the
TCPA specification with which the
component conforms.

Check that the TCPA specification
version is acceptable, else reject.

Optionally, include the "security qualities"
attribute with a text string reflecting the
security qualities of the component.
(Note: this is the component distributed

Optionally (and if present), check
whether the component implementation
has acceptable security qualities.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 292

validation.)
Issuer unigue | Omit. No action.
identifier
Extensions
Certificate Assign “critical” the value TRUE. Assign | Check that at least one acceptable
policies policyldentifier at least one object | policyldentifier value is present.
identifier. Assign the cPSuri policy
qualifier the value of an HTTP URL at
which a plain language version of the
component conformance entity's
certificate policy may be obtained.
Assign the explicit text userNotice policy
gualifier the value “TCPA Validation
Data”.
Subject Assign “critical* the value FALSE. | May be used to determine whether or not

Alternative Name

Include the component name, using the
"component name" attribute, with RDNs
for the component manufacturer, model
and version numbers.

the component is trustworthy.

Authority key | Assign “critical” the value FALSE. Assign | The certificate user may use this value to

identifier the value of “subject key identifier” from | locate the certificate that contains a
the component validation entity | public key of the component validation
certificate, if available, else omit. entity with which the signature on this

certificate can be verified.

SOA ldentifier Omit. No action.

Authority Omit. No action.

Attribute

Identifier

Role Omit. No action.

Specification

Certificate

Identifier

Basic Attribute | Assign “critical” the value TRUE. Assign | Check that “authority” is FALSE.

Constraints “authority” the value FALSE.

Delegated Name | Omit. No action.

Constraints

Time Omit. No action.

Specification

Acceptable Omit. No action.

Certificate

Policies

Attribute Omit. No action.

Descriptor

User Notice Omit. No action.

No Rev Available | Omit. No action.

Acceptable Omit. No action.

Neivsila~a NAaliaiaa

Version 1.1a 1 December 2001

TCPA Main Specification Page 293

Privilege Policies

Version 1.1a 1 December 2001

TCPA Main Specification Page 294

9.5.5 Instantiation of TPM_IDENTITY_CREDENTIAL
Start of informative comment:
A TPM identity certificate is an instantiation of a TPM_IDENTITY_CREDENTIAL.

Access to the TPM identity certificate must be restricted to entities that have a “need to know.” This is for
reasons of privacy.

This definition assumes that TPM identity keys are 2048bit RSA keys.
End of informative comment.

If the data structure <TPM identity certificate> is stored on a platform after an Owner has taken ownership
of that platform, it SHALL exist only in storage to which access is controlled and is available to authorized
entities.

Overview

The TPM identity certificate represents an assertion by the Privacy CA that the referenced TPM identity is
controlled by a TPM that conforms with the TPM specification. It contains a different public key to that
contained in the TPM endorsement certificate, but it contains identifying and policy information transferred
from the TPM endorsement, platform endorsement and platform conformance certificates.

Profile
Note:

* Some fields are assigned a value even though the certificate user performs no action with that
value. In such cases, the intention is to inhibit non-TCPA implementations from making
inappropriate use of the certificate.

» The policies identified in the TPM and platform certificates are represented by oids and are not
distinguishable except by reference to the contents of the policies themselves. The verifier,
however, must be able to distinguish between the different policy types.

In the case of the TPM identity certificate, the issuer is the Privacy CA and the user is an integrity
verifier.

Field Issuer action User action

Version Assign value 2 (v3). Check value = 2, else reject.

Serial number | Assign a value unique amongst all | No action.
certificates issued by “issuer”.

Signature Assign algorithm identifier sha- | Check the algorithm identifier =
1WithRSAENcryption 1:2:840:113549:1:1:5, else reject. Validate
(1:2:840:113549:1:1:5). the signature on the certificate using the

public key of the Privacy CA (which should
be a 2048-bit RSA key), obtained by an out-
of-band means and referenced by “issuer”
and “authority key identifier”.

Issuer The distinguished name of the Privacy | Check that the name is the name of an
CA. acceptable Privacy CA.

Validity Assign notBefore to the current time | Check that the current time is later than the
and notAfter to a later time (maybe | notBefore time, else reject.
the latest time permitted by the
encoding scheme).

Subject NULL. No action.

Subject public | Assign algorithm identifier sha- | Check algorithm identifier =

Version 1.1a 1 December 2001

TCPA Main Specification

Page 295

key info

Issuer unique
identifier

Subject
unigue
identifier

Extensions

Authority key
identifier

Subject
identifier

key

Key usage

Extended key
usage

Private key
usage period

Certificate
policies

Policy
mappings

Subject
alternative
name

1WithRSAENcryption
(1:2:840:113549:1:1:5). The 2048-hit
RSA public key provided to the
Privacy CA by the TPM owner in the
identity request message.

Omit.

Omit.

Assign “critical” the value FALSE.
Assign the value of “subject key
identifier” from the Privacy CA's
public-key certificate, if available, else
omit.

Omit.

May be omitted. If included, then the
digital signature bit shall be set TRUE.

Omit.

Omit.

Assign “critical” the value TRUE.
Assign policyldentifier at least one
object identifier. Optionally, assign
the cPSuri the value of an HTTP URL
at which a plain language version of
the Privacy CA'’s certificate policy may
be obtained. Assign the explicit text
userNotice policy qualifier the value
“TCPA Trusted Platform Identity”.
Also, include the policylnformation
values from the certificate policies
extensions of the TPM endorsement
and platform endorsement and
conformance certificates provided in
the TPM identity request message.

Omit.

Assign “critical” the value FALSE.
Include three values in the extension:

The TPM manufacturer, model and
version numbers from the TPM
endorsement certificate “subject
alternative name” extension provided
in the TPM identity request message;

The platform manufacturer, model

1:2:840:113549:1:1:5, else reject. Use the
public key in the integrity verification
procedure.

No action.

No action.

The certificate user may use this value to
locate the certificate that contains a public
key of the Privacy CA with which the
signature on this certificate can be verified.

No action.

If present, then check that the digital
signature bit is TRUE, else reject.

If present and marked critical, then reject.

If present, then check that the current time is
later than the notBefore time, else reject.

Check that at least one acceptable Privacy

CA policyldentifier value is present.
Optionally, check that at least one
acceptable TPM endorsement, one
acceptable platform endorsement and one
acceptable platform conformance
policyldentifier value are present.

No action.

Check that the manufacturer, model and

version numbers of the TPM and of the
platform are acceptable.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 296

Issuer
alternative
name

Subject
directory
attributes

and version numbers from the
platftorm endorsement certificate
“subject alternative name” extension
provided in the TPM identity request
message; and

The TPM identity label provided to the
Privacy CA by the TPM owner in the
identity request message, encoded as
a TPMlidLabel other-name. The TPM
owner should choose a label syntax
and semantics that are understood by
the integrity verifier. (Note: the
specified syntax accommodates multi-
byte character sets).

Omit.

Assign “critical” the value FALSE.
Include a multi-valued “supported
algorithms” (see X.509) attribute
containing object identifiers from the
“subject directory attributes” extension
of the TPM endorsement certificate
and the “attributes” field of the
platform endorsement certificate and
the platform conformance certificate
provided in the TPM identity request
message.

Include the single-valued "TPM
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "TPM
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "Foundation
protection profile" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the single-valued "Foundation
security target" attribute from the
platform endorsement certificate
provided in the TPM identity request
message.

Include the “security qualities"
attribute from the TPM endorsement
certificate provided in the TPM identity
request message. (Note: this is the

No action.

Adapt the integrity verification protocol to use
only algorithms supported by the TPM and
the associated platform.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Check that the identifier is acceptable.

Optionally (and if present), check whether
the TPM has acceptable security qualities.

Version 1.1a 1 December 2001

TCPA Main Specification

Page 297

Basic
constraints

Name
constraints

Policy
constraints
Inhibit
policy

CRL

distribution
points

any

TPM distributed validation.)

Include the “security qualities"
attribute from the platform
endorsement certificate provided in
the TPM identity request message.
(Note: this is the platform distributed
validation.)

Include the "tcpaVersion" attribute
provided in the TPM identity request
message.

Assign “critical” the value TRUE.
Assign “CA” the value FALSE.

Omit.

Omit.

Omit.

Omit.

Optionally (and if present), check whether
the platform has acceptable security
qualities.

Check that the TCPA specification version is
acceptable, else reject.

No action.

No action.

No action.

No action.

If present and marked critical, then reject.

Version 1.1a 1 December 2001

TCPA Main Specification Page 298

9.5.6 ASN.1 Definitions
Start of informative comment:

The intention is to register TCPA as an “international body” in the ISO registration hierarchy. This will lead
to shorter oids (object identifiers) and gives TCPA autonomy in the management of its own object
identifiers.

End of informative comment.
The syntax of the "security qualities" attribute is as follows:

SecurityQualities ATTRIBUTE :: = {
W TH SYNTAX SecurityQualities
I D tcpa-tpnBecurityQualities }

SecurityQualities ::= SEQUENCE ({
version | NTEGER, --0 for this version of the attribute syntax --
statement [O0] UTF8String }

Note: future versions of this certificate profile may define additional, optional, "security qualities” fields.
Inclusion of the "statement” field will remain mandatory.

The syntax of the "TCPA Specification Version" attribute is as follows:

TCPASpecVer si on ATTRI BUTE :: = {
W TH SYNTAX TCPASpecVer si on
I D tcpa-specVersion }

TCPASpecVer si on :: = SEQUENCE {
maj or | NTEGER,
m nor | NTEGER }

The syntax of the protection profile and security target attributes is as follows:

TPMProtectionProfile ATTRIBUTE :: = {
W TH SYNTAX ProtectionProfile
ID tcpa-at-tpnProtectionProfile }

TPMSecurityTarget ATTRIBUTE ::= {
W TH SYNTAX SecurityTar get
I D tcpa-at-tpnSecurityTarget }

Foundati onProtectionProfile ATTRIBUTE :: = {
W TH SYNTAX ProtectionProfile
I D tcpa-at-foundati onProtectionProfile }

Foundati onSecurityTarget ATTRI BUTE ::= {
W TH SYNTAX SecurityTar get
I D tcpa-at-foundati onSecurityTarget }
ProtectionProfile ::= OBJECT | DENTI FlI ER
SecurityTarget ::= OBJECT | DENTI FI ER

The syntax of the "component name" attribute is as follows:

Conponent Nane ATTRI BUTE :: = {
W TH SYNTAX Nane
I D tcpa- at - conponent Nane }

Version 1.1a 1 December 2001

TCPA Main Specification Page 299

The following definitions define the syntax of the RDNs used in the subject alternative name extension to
identify the type of the TPM and the platform.

Tpmvanuf act urer ATTRI BUTE :: = {
W TH SYNTAX UTF8String
I D tcpa-at-tpnmvanufacturer }

Tpmvbdel ATTRIBUTE :: = {
W TH SYNTAX UTF8String
I D tcpa-at-tpnivbdel }

Tpmver si on ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-tpnVersion }

Pl at f or mvanuf acturerl ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-pl atformvanuf acturer }

Pl at f or mvbdel ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-pl atfornivbdel }

Pl at f or mVer si on ATTRI BUTE :: = {
W TH SYNTAX UTF8Stri ng
I D tcpa-at-platfornVersion }

TPM dLabel OTHER- NAME ::= {UTF8String | DENTI FI ED BY {tcpa-at-tpni dLabel }}

--Object identifier assignments—

t cpa- at -foundati onProtecti onProfile OBJECT | DENTIFIER ::
t cpa- at - f oundati onSecurityTar get OBJECT | DENTI FI ER ::
tcpa- at-tpnl dLabel OBJECT | DENTI FI ER ::
tcpa-prt-tpm dProtocol OBJECT | DENTI FI ER ::

{tcpa-attribute 13}
{tcpa-attribute 14}
{tcpa-attribute 15}
{tcpa-protocol 1}

t cpa OBJECT | DENTI FI ER : : = {TBD}

t cpa- specVer si on OBJECT | DENTIFIER ::= {tcpa-1}
tcpa-attribute OBJECT | DENTIFIER :: = {tcpa-2}

t cpa- prot ocol OBJECT I DENTI FIER ::= {tcpa-3}

t cpa- at - t pmvanuf act ur er OBJECT IDENTIFIER ::= {tcpa-attribute 1}
t cpa- at - t pmvbdel OBJECT IDENTIFIER ::= {tcpa-attribute 2}
t cpa-at -t pnWersion OBJECT IDENTIFIER ::= {tcpa-attribute 3}
t cpa- at - pl at f or mvanuf act ur er OBJECT I DENTIFIER ::= {tcpa-attribute 4}
t cpa- at - pl at f or mvbdel OBJECT IDENTIFIER ::= {tcpa-attribute 5}
t cpa- at - pl at f or mer si on OBJECT IDENTIFIER ::= {tcpa-attribute 6}
t cpa- at - conponent Manuf act ur er OBJECT IDENTIFIER ::= {tcpa-attribute 7}
t cpa- at - conponent Model OBJECT I DENTIFIER ::= {tcpa-attribute 8}
t cpa- at - conponent Ver si on OBJECT I DENTIFIER ::= {tcpa-attribute 9}
tcpa-at-securityQualities OBJECT IDENTIFIER ::= {tcpa-attribute 10}
tcpa-at-tpnProtectionProfile OBJECT IDENTIFIER ::= {tcpa-attribute 11}
tcpa-at-tpnSecurityTarget OBJECT IDENTIFIER ::= {tcpa-attribute 12}

Version 1.1a 1 December 2001

TCPA Main Specification Page 300

10. Conformance Criteria

10.1 Base Levels for Interoperability

The algorithms and protocols in this specification are the REQUIRED algorithms and protocols. A TPM
subsystem MAY support additional algorithms and protocols. When this specification specifies the use of
the TSS for a feature, an implementation MAY place the feature in the TPM.

The interoperability requirements shall be implemented at the TSS layer not the TPM. It is the
responsibility of the TPM manufacturer to produce a vendor specific byte stream generator. The TSS will
provide a generic API that all applications for a specific platform (PC, PDA, etc) can use.

Version 1.1a 1 December 2001

TCPA Main Specification Page 301

10.2 Conformance Specification Sheet

Version 1.1a 1 December 2001

TCPA Main Specification Page 302

10.3 Protocol Negotiation and Algorithm Agility

The TPM MUST support the base algorithms specified for each operation. The TPM MAY support
additional algorithms and parameters.

The TPM manufacturer MUST include in the TPM credential all algorithms that the TPM supports.
The TSS manufacturer MUST include in the platform credential all algorithms that the TSS supports.

Version 1.1a 1 December 2001

TCPA Main Specification Page 303

10.4 Cryptographic Algorithms and Protocols

10.4.1 Asymmetric

e The TPM MUST support RSA.
* The TPM MUST use the RSA algorithm for encryption and digital signatures.

e The TPM MUST support key sizes of 512, 1024, and 2048 bits. The TPM MAY support other key
sizes. The minimum RECOMMENDED key size is 1024 bits.

« The RSA public exponent MUST be e, where e = 2'%+1.

TPM devices that use CRT as the RSA implementation MUST provide protection and detection of failures
during the CRT process to avoid attacks on the private key.

The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve. These algorithms
may be in use for wrapping, signatures, and other operations. There is no guarantee that these keys can
migrate to other TPM devices or that other TPM devices will accept signatures from these additional
algorithms.

All Storage keys MUST be of strength equivalent to a 2048 bits RSA key or greater. The TPM SHALL
NOT load a Storage key whose strength less than that of a 2048 bits RSA key.

All TPM Identity keys MUST be of strength equivalent to a 2048 bits RSA key, or greater.

10.4.2 Symmetric

Version 1.1a 1 December 2001

TCPA Main Specification Page 304

The TSS MUST support 3DES. 3DES SHOULD be the symmetric algorithm of choice. The key size of
3DES MUST be 196 hits (three 64-bit keys). 3DES MUST be run in encrypt-decrypt-encrypt (EDE) mode.
The TSS MUST provide detection of weak 3DES keys.

The TSS MUST support DES. The key size for DES MUST be 64 bits (56 bits plus parity). The TSS
MUST provide detection of weak DES keys.

The TSS SHOULD have support for AES when it becomes available.
A TPM MUST support the storage of at least 256-bit symmetric keys.

10.4.3 Hashing

The TPM MUST support the SHA-1 hash algorithm as defined by FIPS-180-1. The output of SHA-1 is 160
bits and all areas that expect a hash value are REQUIRED to support the full 160 bits.

10.4.4 Signature Operations

The TPM MUST use the RSA algorithm for signature operations.

The TPM MAY use other asymmetric algorithms for signatures; however, there is no requirement that any
other TPM device either accept or verify those signatures.

The TPM MUST use P1363 for the format and design of the signature output.

Version 1.1a 1 December 2001

TCPA Main Specification Page 305

10.4.5 Creating a PCR composite hash

The definition specifies the operation necessary to create TCPA_COMPOSITE_HASH.
Action

The hashing MUST be done using the SHA-1 algorithm.

The input must be a valid TCPA_PCR_SELECTION structure.

The process creates a TCPA_PCR_COMPOSITE structure from the TCPA_PCR_SELECTION structure
and the PCR values to be hashed. If constructed by the TPM the values MUST come from the current
PCR registers indicated by the PCR indices in the TCPA_PCR_SELECTION structure.

The process then computes a SHA-1 digest of the TCPA_PCR_COMPOSITE structure.
The output is the SHA-1 digest just computed.

10.4.6 Creating TCPA_CHOSENID_HASH
This definition specifies the operation necessary to create a TCPA_CHOSENID_HASH structure.

Parameters

Type Name Description

BYTE[] identitylabel The label chosen for a new TPM identity

TCPA_PUBKEY . The public key of a privacy CA chosen to
privacyCA attest to a new TPM identity

Action

The hashing MUST be done using the SHA-1 algorithm.

The process concatenates identityLabel and privacyCA (identityLabel followed by privacyCA) and
computes a SHA-1 digest of the concatenated data.

The output is the SHA-1 digest just computed.

10.4.7 Using Secret Keys

Informative comments:

Secret keys can be loaded into a TPM, but preferably are generated inside the TPM.

A TPM generated key must not be used as a secret key if it has already been exposed.
Secret keys obtained from blobs must not be exposed outside the TPM.

End of informative comments.

A secret key is a key that is a private asymmetric key or a symmetric key.

Data SHOULD NOT be used as a secret key by a TCPA protected capability unless that data has been
extant only in a shielded location.

A key generated by a TCPA protected capability SHALL NOT be used as a secret key unless that key
has been extant only in a shielded location.

A secret key obtained by a TCPA protected capability from a Protected Storage blob SHALL be extant
only in a shielded location.

Version 1.1a 1 December 2001

TCPA Main Specification Page 306

10.5 Random Number Generator (RNG)

Start of informative comment:

The Random Number Generator (RNG) is the source of randomness in the TPM. The TPM uses these
random values for nonces, key generation and randomness in signatures.

The understanding is that this definition of the RNG, depending on implementation, could be a Pseudo
Random Number Generator (PRNG). On those devices that have a hardware source of entropy, this
implementation may be an RNG and not a PRNG so there is no need for to keep track of which is which;
that is, the specification will always use RNG.

End of informative comment.

The RNG for the TPM will consist of the following components:

« Entropy source and collector

e State register

* Mixing function

The RNG capability is a TPM-protected capability with no access control.

The RNG output may or may not be shielded data. When the data is for internal use by the TPM (e.g.,
asymmetric key generation) the data MUST be held in a shielded location. When the data is for use by
the TSS or another external caller, the data is not shielded.

10.5.1 Entropy Source and Collector
Start of informative comment:

The entropy source is the process or processes that provide entropy. These types of sources could
include noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes the output.
The difference between the collector and the mixing function (described in section 10.6.3, “Mixing
Function”) is that the collector may have special code to handle any bias or skewing of the raw entropy
data. For instance, if the entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then
the collector design takes that bias into account before sending the information to the state register.

End of informative comment.

The entropy source MUST provide entropy to the state register in a manner that provides entropy that is
not visible to an outside process. For compliance purposes, the entropy source MAY be in the TSS and
not the TPM; however, attention MUST be paid to the reporting mechanism.

The entropy source MUST provide the information only to the state register. The entropy source may
provide information that has a bias, so the entropy collector must remove the bias before updating the
state register. The bias removal could use the mixing function or a function specifically designed to
handle the bias of the entropy source. The entropy source can be a single device (such as hardware
noise) or a combination of events (such as disk timings). It is the responsibility of the entropy collector to
update the state register whenever the collector has additional entropy.

10.5.2 State Register

Start of informative comment:

The state register implementation may use two registers: a non-volatile register and a volatile register.
The TPM loads the volatile register from the non-volatile register on startup. Each subsequent change to
the state register from either the entropy source or the mixing function affects the volatile state register.
The TPM saves the current value of the volatile state register to the non-volatile register on TPM power-

Version 1.1a 1 December 2001

TCPA Main Specification Page 307

The state register is in a TPM-shielded location. The state register MUST be non-volatile. The update
function to the state register is a TPM-protected capability. The primary input to the update function
SHOULD be the entropy collector.

If the current value of the state register is unknown, calls made to the update function with known data
MUST NOT result in the state register ending up in a state that an attacker could know. This requirement
implies that the addition of known data MUST NOT result in a decrease in the entropy of the state
register.

The TPM MUST NOT export the state register.

10.5.3 Mixing Function

Each use of the mixing function MUST affect the state register. This requirement is to affect the volatile
register and does not need to affect the non-volatile state register.

10.5.4 RNG Reset

The RNG MUST NOT output any bits after a system reset until the following occurs:

* The entropy collector performs an update on the state register. This does not include the adding of
the previous state but requires at least one bit of entropy.

» The mixing function performs a self-test. This self-test MUST occur after the loading of the previous
state. It MAY occur before the entropy collector performs the first update.

Version 1.1a 1 December 2001

TCPA Main Specification Page 308

10.6 Key Generation

10.6.1 Asymmetric

The TPM MUST generate asymmetric key pairs. The generate function is a protected capability and the
private key is held in a shielded location. The implementation of the generate function MUST be in
accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If additional
asymmetric algorithms are available, they MUST use the definitions from P1363 for the underlying basis
of the asymmetric key (for example, elliptic curve fitting).

10.6.2 Symmetric

The TSS MUST generate a symmetric key by taking the next n bits from the TPM RNG.

The TSS SHOULD provide any processing of a symmetric key. Processing is an algorithm-specific
operation and implementation is left to the designer.

10.6.3 Nonce Creation

The creation of all nonce values MUST use the next n bits from the TPM RNG.

Version 1.1a 1 December 2001

TCPA Main Specification Page 309

10.7 Auditing

The TPM MUST be able to generate audit events for all TCPA protected capabilities.
The TPM Owner MUST be able to select the functions that will generate an audit event at any time.

The TPM MUST provide a PCR to store and log the audit events. The TPM MUST allow for the reporting
of the current audit log PCR value. The value that the TPM adds to the TPM audit PCR MUST be the
TCPA_AUDIT_EVENT structure.

The TSS MUST provide a log of all TPM-generated events. The TPM will generate the event and the TSS
will fill in the event details. The TPM SHALL provide as much detail as it has available; however, the TSS
MUST fill in all remaining details for the audit event. For instance, the audit event will require a data and
time stamp on the event. There is no requirement for a clock function in the TPM, so the date and time
would come normally from the TSS.

The TPM MAY generate audit events for other functions and activities not on this list.

Version 1.1a 1 December 2001

TCPA Main Specification Page 310

10.8 Self-Tests

The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow the self-tests to
be run on demand. The response from the self-tests is pass or fail.

The TPM MUST complete the startup self-tests in a manner and timeliness that allows the TPM to be of
use to the BIOS during the collection of integrity metrics. The TPM MUST complete the required checks
before a given feature is in use. This requirement allows the TPM to test the integrity metric storage and
allow its use while simultaneously continuing to test the signature engine.

There are two sections of startup self-tests: required and recommended. The recommended tests are not
a requirement due to timing constraints. The TPM manufacturer should perform as many tests as possible
in the time constraints.

The TPM MUST report the tests that it performs.
The TPM MUST provide a mechanism to allow self-test to execute on request by any Challenger.

The TPM MUST provide for testing of some operations during each execution of the operation.

10.8.1 Required Self-Tests
The TPM MUST check the following:
* RNG functionality. This test follows FIPS 140-1, which checks the functioning of an RNG.

* Reading and extending the integrity registers. The self-test for the integrity registers will leave the
integrity registers in a known state.

» Testing the endorsement key pair integrity, if they exist. This requirement specifies that the TPM will
verify that the endorsement key pair can sign and verify a known value. This test also tests the RSA
sign and verify engine. If an endorsement key has not yet been generated the TPM action is
manufacturer specific.

* The integrity of the protected capabilities of the TPM. This means that the TPM must ensure that its
“microcode” has not changed, and not that a test must be run on each function.

* Any tamper-resistance markers. The tests on the tamper-resistance or tamper-evident markers are
under programmable control. There is no requirement to check tamper-evident tape or the status of
epoxy surrounding the case.

10.8.2 Recommended Checks

The TPM SHOULD check the following:

« The hash functionality. This check will hash a known value and compare it to an expected result.
There is no requirement to accept external data to perform the check. The TPM MAY support a test
using external data.

* Any symmetric algorithms. This check will use known data with a random key to encrypt and decrypt
the data.

« Any additional asymmetric algorithms. This check will use known data to encrypt and decrypt.

e The key-wrapping mechanism. The TPM should wrap and unwrap a key. The TPM MUST NOT use
the endorsement key pair for this test.

10.8.3 Self-Test Failure

When the TPM detects a failure during any self-test, the part experiencing the failure MUST enter a shut-
down mode. This shut-down mode will allow only the following operation to occur:

Version 1.1a 1 December 2001

TCPA Main Specification Page 311

« Update. The update function MAY replace invalid microcode, providing that the parts of the TPM that
provide update functionality have passed self-test.

All other operations will return the error code TCPA_FAILEDSELFTEST.

10.9 Object Reuse

The TPM MUST destroy and erase all temporal objects when the TPM finishes processing the object. The
use of an object can be a long-term operation. For instance, the TPM could load an identity key and keep
the key in memory while performing multiple challenge and response operations. There is no requirement
to unload the object after each operation, but there is a requirement that the object be properly disposed
of when all operations are complete.

When an internal TPM process uses objects, no information regarding the object may be available to
outside processes. The TPM MUST enforce access control to all objects carrying sensitive information.

10.10Maintenance

The maintenance feature MUST ensure that the information can be on only one TPM at a time.
Maintenance MUST ensure that at no time the process will expose a shielded location. Maintenance
MUST require the active participation of the Owner.

10.11Backup

The TPM MUST support the backup feature. The TPM MUST create a blob of migratable data that is
readable by any other TPM. A receiving TPM MAY reject a backup blob if the underlying information is a
non-standard size or algorithm.

10.12Strength of Function

Version 1.1a 1 December 2001

TCPA Main Specification Page 312

The TPM MUST report the SOF values to a Challenger and the SOF values MUST be part of the TPM
endorsement certificate and the platform conformance certificate.

10.13Physical Protection

TPM MUST satisfy the FIPS 140-1 (or it's successor) level 2 physical security requirements, or it's
equivalent.

10.14Protection Profile

Version 1.1a 1 December 2001

TCPA Main Specification Page 313

10.15Compliance to Specification

10.16Field Upgrade

The TPM SHOULD have provisions for upgrading the subsystem after shipment from the manufacturer. If
provided the mechanism MUST follow the requirement from section S.El

10.17Physical Presence or Access

Version 1.1a 1 December 2001

TCPA Main Specification Page 314

The requirement for physical presence MUST be met by the platform manufacturer using some physical
mechanism.

10.17.1 TSC_PhysicalPresence

Type

TCPA connection capability. Optional function this functionality can be implemented by any vendor
specific command

Incoming Operands and Sizes

PARAM HMAC

Type Name Description
| SZ)| # | SZ
1 2 TCPA_TAG tag TPM_TAG_RQU_COMMAND
2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

. Command ordinal, fixed value of

3| 4 TCPA_COMMAND_CODE | ordinal TSC_ORD._PhysicalPresence.

TCPA_PHYSICAL_ .) .
4 12 PRESENCE physicalPresence The state to set the TPM's Physical Presence flags.

Outgoing Operands and Sizes

PARAM HMAC o
Type Name Description

| SZ) # | SZ

Version 1.1a 1 December 2001

TCPA Main Specification Page 315

1| 2 TCPA_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TCPA RESULT retumnCode The retumn code of the operation. See section 4.3 of Main
- Specification.

Descriptions
This command must implemented in the TPM, however support for all of the bits is optional.

The operation sets the state of the physicalPresencelLifetimeLock, physicalPresenceHWEnable, and
physicalPresenceCMDEnable flags to indicate how physical presence is to be indicated. It also sets the
PhysicalPresence and PhysicalPresencelLock flags, if enabled, during operation of the Platform to
indicate physical presence. This is a bit mask allowing a combination of flags to be set in a single
operation.

Note: The TPM_PhysicalEnable requires unambiguous evidence of the presence of physical access. This
is a higher level of proof than the other “physical presence” commands. A PhysicalPresence flag set to
TRUE, SHALL NOT be sufficient proof to permit execution of TPM_PhysicalEnable unless it is impossible
for software to subvert the TSC_PhysicalPresence command.

Actions
1. This operation MUST be implemented to process the values in the following order:
a. physicalPresenceHWEnable and physicalPresenceCMDEnable
b. physicalPresencelLifetimeLock
c. PhysicalPresence
d. PhysicalPresencelLock

2. Once the PhysicalPresenceLock flag is set to TRUE, the TPM MUST not modify the
PhysicalPresence flag until a TPM_Init followed by TPM_Startup(stType = TCPA_ST_CLEAR). Upon
a TPM_Init and TPM_Startup(stType = TCPA_ST_STATE) the TPM MUST set the
PhysicalPresencelLock flag to FALSE.

3. If the PhysicalPresencelLock flag is set to TRUE upon any call to this operation, the TPM MUST
cause no action and MUST return the error TCPA_BAD_PARAMETER.

Version 1.1a 1 December 2001

TCPA Main Specification Page 316

10.180ther Specifications

Individual manufacturers MAY do the additional design and testing to obtain a FIPS 140 certification, but
there is no requirement that a TCPA device obtain this testing.

Specifications or standards included in this specification
» PKCS#1: RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) Version 2.0
0o RSAES_OAEP (2.0)
0 RSASSA-PKCS1-vl 5

 |ITU-T Recommendation X.509 | ISO/IEC 9594-8: “Information technology - Open Systems
Interconnection — The Directory: Public-key and attribute certificate frameworks”, 4™ Edition.

+ DES/3DES: Data Encryption Standard FIPS 46-3 (DES) : National Institute of Standards and
Technology

» ASN.1: Abstract Syntax Notation One : ITU-T Recommendations X.680-X.683

* FIPS 140-1: Federal Information Processing Standards Publication 140-1 “Security Requirements
for Cryptographic Modules”

* BER: Basic Encoding Rules : ITU-T Recommendation X.690-691 (1997)
* ISO 15408 (Common Criteria)

e SHA-1: Secure Hash Algorithm : NIST FIPS PUB 180-1, “Secure Hash Standard,” : National
Institute of Standards and Technology

« RFC 2104 (HMAC)

Version 1.1a 1 December 2001

TCPA Main Specification Page 317

Appendix A: Glossary

3DES

DES using a key of a size that is 3X the size that of a DES key. See DES.
Blob

Opague data of fixed or variable size. The meaning and interpretation of the data is outside the scope
and context of the Subsystem.

Challenger
An entity that requests and has the ability to interpret integrity metrics from a Subsystem.
Conformance Credential

A credential that states the conformance to the TCPA specification of: the TPM; the method of
incorporation of the TPM into the platform; the RTM; and the method of incorporation of the RTM into the
platform.

Denial-of-service attack
A attack on a system (or subsystem) which has no affect on information except to prevent its use.
DES

Endorsement Credential

A credential containing a public key (the endorsement public key) that was generated by a genuine TPM.
Endorsement Key

A term used ambiguously, depending on context, to mean a pair of keys, or the public key of that pair, or
the private key of that pair; an asymmetric key pair generated by a TPM that is used as proof that a TPM
is a genuine TPM; the public endorsement key (PUBEK); the private endorsement key (PRIVEK).

Identity Credential

A credential issued by a Privacy CA that provides an identity for the TPM.
Integrity metric(s)

Values that are the results of measurements on the integrity of the platform.
Man-in-the-middle attack

An attack by an entity intercepting communications between two others without their knowledge and by
intercepting that communication is able to obtain or modify the information between them.

Migratable
A key which may be transported outside the specific TPM.
Non-Migratable

A key which cannot be transported outside a specific TPM; a key that is (statistically) unique to a
particular TPM.

Non-Volatile
Storage location or memory that retain their values after power-off or a TPM_Init function.
Owner

The entity that owns the platform in which a TPM is installed. Since there is, by definition, a one-to-one
relationship between the TPM and the platform, the Owner is also the Owner of the TPM. The Owner of

Version 1.1a 1 December 2001

http://csrc.ncsl.nist.gov/cryptval/des.htm

TCPA Main Specification Page 318

the platform is not necessarily the “user” of the platform (e.g., in a corporation, the Owner of the platform
might be the IT department while the user is an employee.) The Owner has administration rights over the
TPM.

PKI Identity Protocol

The protocol used to insert anonymous identities into the TPM.

Platform Credential

A credential that states that a specific platform contains a genuine TCPA Subsystem.
POST

POST refers to the Power On Self Test performed by a PC.

Protection Profile

A document that defines all attacks and how they are resisted by the TPM, the RTM, and the methods by
which they are incorporated into the platform.

Privacy CA

An entity that issues an Identity Credential for a TPM based on trust in the entities that vouch for the TPM
via the Endorsement Credential, the Conformance Credential, and the Platform Credential.

Private Endorsement Key (PRIVEK)

The private key of the key pair that proves that a TPM is a genuine TPM. The PRIVEK is (statistically)
unique to only one TPM.

Public Endorsement Key (PUBEK)

A public key that proves that a TPM is a genuine TPM. The PUBEK is (statistically) unique to only one
TPM.

Random number generator (RNG)

A pseudo-random number generator that must be initialized with unpredictable data and provides,
“random” numbers on demand.

Root of Trust for Measurement (RTM)

The point from which all trust in the measurement process is predicated. The RTM contains many
components to provide this level of trust. The design document shows that the RTM includes a core
component, the computing engine to run the core component, physical connections of the core and the
computing engine and other items.

Root of Trust for Reporting (RTR)

The point from which all trust in reporting of measured information is predicated.
Root of Trust for Storing (RTS)

The point from which all trust in Protected Storage is predicated.

RSA

An (asymmetric) encryption method using two keys: a private key and a public key. Reference:
http://www.rsa.com|.

SHA-1

A NIST defined hashing atg.adlh.m.p.m&mlng_aJ_ﬁ.O_b.iI_mLULLLom] an arbitrary sized source as specified in
FIPS 180-1. Reference: hitp://csrc nesl nist govicryptval/shs html

Storage Root Key (SRK)

Version 1.1a 1 December 2001

http://www.rsa.com/
http://csrc.ncsl.nist.gov/cryptval/shs.html

TCPA Main Specification Page 319

The root key of a hierarchy of keys associated with a TPM; generated within a TPM; a non-migratable
key.

Subsystem
The combination of the TSS and the TPM.
Support Services (TSS)

Services to support the TPM but which do not need the protection of the TPM. The same as Trusted
Platform Support Services.

Trusted Building Block (TBB)

A trusted Platform is instantiated as a Trusted Building Block (TBB) which is the evaluated component of
a trusted system. The TBB is composed of the TPM, the Core RTM and the connection between them.

TCPA-protected capability

A function which is protected within the TPM, and has access to TPM secrets.

TPM Identity

One of the anonymous PKI identities belonging to a TPM; a TPM may have multiple identities.
TPM POST

TPM POST refers to the Power On Self Test performed by a TPM.

Trusted Platform Agent (TPA)

Trusted Platform Agent; the component within the platform that reports integrity metrics, logs, Validation
Data, etc. to a Challenger; outside the scope of this specification.

Trusted Platform Measurement Store (TPMS)
Storage locations within the Subsystem, which contain unprotected logs of measurement process.
Trusted Platform Module (TPM)

The set of functions and data that are common to all types of platform, which must be trustworthy if the
Subsystem is to be trustworthy; a logical definition in terms of protected capabilities and shielded
locations.

Trusted Platform Support Services (TSS)

The set of functions and data that are common to all types of platform, which are not required to be
trustworthy (and therefore do not need to be part of the TPM).

User

An entity that uses the platform in which a TPM is installed. The only rights that a User has over a TPM
are the rights given to the User by the Owner. These rights are expressed in the form of authorization
data, given by the Owner to the User, that permits access to entities protected by the TPM. The User of
the platform is not necessarily the “owner” of the platform (e.g., in a corporation, the owner of the platform
might be the IT department while the User is an employee). There can be multiple Users.

Validation Credential

A credential that states values of measurements that should be obtained when measuring a particular
part of the platform when the part is functioning as expected.

Validation Data

Data inside a Validation Credential; the values that the integrity measurements should produce when the
part of a platform described by the Validation Credential is working correctly.

Validation Entity

Version 1.1a 1 December 2001

TCPA Main Specification Page 320

An entity that issues a Validation Certificate for a component; the manufacturer of that component; an
agent of the manufacturer of that component.

Volatile

Storage locations or memory that are either set to a predefined value (e.g.,zero) or have values that are
undefined upon completion of a power-on or TPM_Init function.

Version 1.1a 1 December 2001

TCPA Main Specification Page 321

Appendix B: Key Usage Table

This table summarizes the types of keys associated with a given TPM command.

Second
First Key Key
. . 5 Solre zdzg &
£ £ z 255E823552E228
: : : S0PREeY2oL5RY
) n-=x — n-=<
TPM ChangeAut h parent blob X XXX XX
TPM_CSAP entity X X X XXX
TPM _ChangeAut hAsyntt ar t idKey ephemeral X X
TPM_ChangeAut hAsynti ni sh parent ephemeral X X
TPM Quot e key X X X
TPM _Seal key X
TPM Unseal parent X
24 TPM_UnBi nd key X X
@ TPM Cr eat eW apKey parent X
m TPM_LoadKey parent inKey X XXX XX
TPM_Cet PubKey key X X X XX X
TPM Creat eM grati onBl ob parent blob X X X X X
TPM Convert M grationBl ob parent X
TPM Certi f yKey certkey inKey X X X[X XX XX
-1 TPM Si gn key X X
B92] TPMCertifySelfTest key X X X
El TPM Get Capabi | i tySi gned key X X X
~12: TPM _Get Audi t Event Si gned key X X X
%l TPM Activateldentity idKey X

Version 1.1a 1 December 2001

	Forward
	The Trusted Platform Subsystem
	Introduction
	Roots of Trust
	Definitions
	Instantiations and Trust Bindings

	Integrity Operations
	Storage of Integrity Metrics
	Reporting of Integrity Metrics

	Use of Keys Associated with TPM Identities
	Cryptographic Operations
	Opting to use a TPM
	Enabling Ownership
	Activating a TPM
	Selected operations

	Protected, Unprotected, and Connection Operations

	Protection
	Introduction
	Threat
	Integrity
	Privileged Access
	Side effects

	Structures and Defines
	
	Endness of Structures
	Byte Packing
	Lengths

	Defines
	Basic data types
	Boolean types
	Vendor specific

	Return codes
	Command Specification Table Description
	Introduction, Definition of Terms
	HMAC Calculation for Authorization
	Parameter List Tag Identifiers

	TCPA_VERSION
	TCPA_DIGEST
	TCPA_NONCE
	TCPA_AUTHDATA
	TCPA_KEY_HANDLE_LIST
	TCPA_KEY_USAGE values
	Mandatory Key Usage Schemes

	TCPA_AUTH_DATA_USAGE values
	TCPA_KEY_FLAGS
	Flags and persistent data structures
	TCPA persistent data
	TCPA_PERSISTENT_FLAGS Structure
	TCPA_VOLATILE_FLAGS Structure

	TCPA_PAYLOAD_TYPE
	TCPA_ENTITY_TYPE
	TCPA_STARTUP_TYPE
	TCPA_PROTOCOL_ID
	TCPA_ALGORITHM_ID
	TCPA_PHYSICAL_PRESENCE
	TCPA_RSA_KEY_PARMS

	TCPA_CHANGEAUTH_VALIDATE
	TCPA_MIGRATE_SCHEME
	TCPA_MIGRATIONKEYAUTH
	TCPA_AUDIT_EVENT structure
	PCR Structures
	TCPA_EVENT_CERT
	TCPA_PCR_EVENT
	TCPA_PCR_SELECTION
	TCPA_PCR_COMPOSITE
	TCPA_PCR_INFO

	Storage Structures
	TCPA_STORED_DATA
	TCPA_SEALED_DATA
	TCPA_SYMMETRIC_KEY
	TCPA_BOUND_DATA

	TCPA_KEY complex
	TCPA_KEY
	TCPA_STORE_PUBKEY
	TCPA_PUBKEY
	TCPA_STORE_ASYMKEY
	TCPA_STORE_PRIVKEY
	TCPA_MIGRATE_ASYMKEY

	TCPA_CERTIFY_INFO Structure
	TCPA_QUOTE_INFO Structure
	Identity Structures
	TCPA_IDENTITY_CONTENTS
	TCPA_IDENTITY_REQ
	TCPA_IDENTITY_PROOF
	TCPA_ASYM_CA_CONTENTS
	TCPA_SYM_CA_ATTESTATION

	TCPA_CAPABILITY_AREA
	Credentials
	Evidence of Subsystem Endorsement
	Evidence of Platform Endorsement
	Evidence of Platform Conformance
	TCPA Validation Data
	Evidence of Trusted Platform Module Identity

	Command Ordinals

	Authorization and Ownership
	Introduction
	Tag Usage

	Authorization protocols
	OI-AP description
	TPM_OIAP
	Authorization using an OI-AP session
	OS-AP Description
	TPM_OSAP
	Authorization using an OS-AP session

	TPM_Terminate_Handle
	ADIP – Creating a New Entity
	ADCP - Changing Authorization Data
	Changing authorization values
	TPM_ChangeAuth
	TPM_ChangeAuthOwner

	Asymmetric Authorization Change Protocol
	TPM_ChangeAuthAsymStart
	TPM_ChangeAuthAsymFinish

	Authorization Data
	Nonces
	Authorization Handle
	TPM Ownership
	TPM_TakeOwnership

	Integrity Collection and Reporting
	Introduction
	Platform Configuration Registers
	Format and Properties
	Initialization
	Authorized PCRs

	Operations Supporting Integrity Collection and Reporting
	TPM_Extend
	TPM_PcrRead
	TPM_Quote
	TPM_DirWriteAuth
	TPM_DirRead

	Protected Storage
	Introduction
	Characteristics
	Key Storage

	Mandatory Functions
	TPM_Seal
	TPM_Unseal
	TSS_Bind
	TPM_UnBind
	TPM_CreateWrapKey
	TSS_WrapKey
	TSS_WrapKeyToPcr
	TPM_LoadKey
	TPM_EvictKey
	TPM_GetPubKey
	TPM_CreateMigrationBlob
	TPM_ConvertMigrationBlob
	TPM_AuthorizeMigrationKey

	TPM Optional Functions: Maintenance
	TPM_CreateMaintenanceArchive
	TPM_LoadMaintenanceArchive
	TPM_KillMaintenanceFeature
	TPM_LoadManuMaintPub
	TPM_ReadManuMaintPub

	Cryptographic and Miscellaneous Functions
	Introduction
	TPM Hash Operations
	TPM_SHA1Start
	TPM_SHA1Update
	TPM_SHA1Complete
	TPM_SHA1CompleteExtend

	Key Certification
	TPM_CertifyKey

	TPM Internal Asymmetric Encryption
	TCPA_ES_RSAESOAEP_SHA1_MGF1
	TCPA_ES_RSAESPKCSV15

	TPM Internal Digital Signatures
	TCPA_SS_RSASSAPKCS1v15_SHA1
	TCPA_SS_RSASSAPKCS1v15_DER

	HMAC Calculation
	Digital Signatures
	TPM_Sign
	TSS_VerifySignature

	Random Numbers
	TPM_GetRandom
	TPM_StirRandom

	Self Test
	TPM_SelfTestFull
	TPM_CertifySelfTest
	TPM_ContinueSelfTest
	TPM_GetTestResult

	Reset and Clear Operations
	TPM_Reset
	TPM_Init
	TPM_SaveState
	TPM_Startup
	TPM_OwnerClear
	TPM_DisableOwnerClear
	TPM_ForceClear
	TPM_DisableForceClear

	The GetCapability Commands
	TPM_GetCapability
	TPM_GetCapabilitySigned
	TPM_GetCapabilityOwner

	Audit Commands
	TPM_GetAuditEvent
	TPM_GetAuditEventSigned
	TPM_SetOrdinalAuditStatus
	TPM_GetOrdinalAuditStatus
	Effect of audit failing after successful completion of a command

	Enabling Ownership
	TPM_SetOwnerInstall

	Enabling a TPM
	TPM_OwnerSetDisable
	TPM_PhysicalDisable
	TPM_PhysicalEnable

	Activating a TPM
	TPM_PhysicalSetDeactivated
	TPM_SetTempDeactivated

	TPM_FieldUpgrade
	TPM_SetRedirection
	Key and Session Management
	TPM_SaveKeyContext
	TPM_LoadKeyContext

	Authorization Context Management
	TPM_SaveAuthContext
	TPM_LoadAuthContext

	Subsystem Credentials
	Introduction
	Endorsement
	TPM_CreateEndorsementKeyPair
	TPM_ReadPubek
	TPM_DisablePubekRead
	TPM_OwnerReadPubek

	Generating a Trusted Platform Module Identity
	TPM_MakeIdentity
	TSS_CollateIdentityRequest
	Contacting a Privacy CA
	TPM_ActivateIdentity
	TSS_RecoverTPMIdentity

	Instantiation of Data When Contacting a Privacy CA
	From Owner to Privacy CA
	From Privacy CA to Owner

	Instantiation of Credentials as Certificates
	Instantiation of TPM_ENDORSEMENT_CREDENTIALs
	Instantiation of PLATFORM_CREDENTIAL
	Instantiation of TPM_CONFORMANCE_CREDENTIAL
	Instantiation of VALIDATION_DATA
	Instantiation of TPM_IDENTITY_CREDENTIAL
	ASN.1 Definitions

	Conformance Criteria
	Base Levels for Interoperability
	Conformance Specification Sheet
	Protocol Negotiation and Algorithm Agility
	Cryptographic Algorithms and Protocols
	Asymmetric
	Symmetric
	Hashing
	Signature Operations
	Creating a PCR composite hash
	Creating TCPA_CHOSENID_HASH
	Using Secret Keys

	Random Number Generator (RNG)
	Entropy Source and Collector
	State Register
	Mixing Function
	RNG Reset

	Key Generation
	Asymmetric
	Symmetric
	Nonce Creation

	Auditing
	Self-Tests
	Required Self-Tests
	Recommended Checks
	Self-Test Failure

	Object Reuse
	Maintenance
	Backup
	Strength of Function
	Physical Protection
	Protection Profile
	Compliance to Specification
	Field Upgrade
	Physical Presence or Access
	TSC_PhysicalPresence

	Other Specifications

	Appendix A: Glossary
	Appendix B: Key Usage Table

